A045782 Number of factorizations of n for some n (image of A001055).
1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
Offset: 1
Keywords
Links
- Florian Luca, Anirban Mukhopadhyay and Kotyada Srinivas, On the Oppenheim's "factorisatio numerorum" function, arXiv:0807.0986 [math.NT], 2008.
Crossrefs
Programs
-
Mathematica
terms = 61; m0 = 10^5; dm = 10^4; f[1, ] = 1; f[n, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}]; Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm]; seq[m] (* Jean-François Alcover, Oct 04 2018 *)
Formula
The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009
Extensions
Name edited by Gus Wiseman, Jan 11 2020
Comments