cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045782 Number of factorizations of n for some n (image of A001055).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
Offset: 1

Views

Author

Keywords

Comments

Also the image of A318284. - Gus Wiseman, Jan 11 2020

Crossrefs

Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).

Programs

  • Mathematica
    terms = 61; m0 = 10^5; dm = 10^4;
    f[1, ] = 1; f[n, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
    Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
    seq[m] (* Jean-François Alcover, Oct 04 2018 *)

Formula

The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009

Extensions

Name edited by Gus Wiseman, Jan 11 2020