cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045797 Evenish numbers (prime to 10 and 10's digit is even).

This page as a plain text file.
%I A045797 #37 Jan 09 2023 16:53:44
%S A045797 1,3,7,9,21,23,27,29,41,43,47,49,61,63,67,69,81,83,87,89,101,103,107,
%T A045797 109,121,123,127,129,141,143,147,149,161,163,167,169,181,183,187,189,
%U A045797 201,203,207,209,221,223,227,229,241,243,247,249,261,263,267,269,281
%N A045797 Evenish numbers (prime to 10 and 10's digit is even).
%C A045797 From _Jianing Song_, Apr 27 2019: (Start)
%C A045797 Numbers congruent to {1, 3, 7, 9} mod 20.
%C A045797 Numbers k such that Kronecker(-20,k) = A289741(k) = +1. (End)
%C A045797 First 20 terms are congruences of 3^k mod 100. - _Dario Vuksan_, Jan 09 2023
%H A045797 Reinhard Zumkeller, <a href="/A045797/b045797.txt">Table of n, a(n) for n = 1..10000</a>
%H A045797 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A045797 Conjecture a(n) = a(n-1)+a(n-4)-a(n-5). G.f.: x*(1+2*x+4*x^2+2*x^3+11*x^4) / ((1-x)^2*(1+x)*(1+x^2)). - _Colin Barker_, Apr 14 2012
%F A045797 The conjecture above is correct. - _Jianing Song_, Apr 27 2019
%F A045797 a(n) = 5n + O(1). - _Charles R Greathouse IV_, Jan 09 2023
%t A045797 Flatten[Table[10n+{1,3,7,9},{n,0,30,2}]] (* _Harvey P. Dale_, Dec 05 2012 *)
%o A045797 (Haskell)
%o A045797 a045797 n = a045797_list !! (n-1)
%o A045797 a045797_list = filter (even . (`mod` 10) . (`div` 10)) a045572_list
%o A045797 -- _Reinhard Zumkeller_, Dec 10 2011
%o A045797 (PARI) is(n)=gcd(n,10)==1 && n\10%2==0 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y A045797 Complement of A045798 with respect to A045572.
%K A045797 nonn,base,easy,nice
%O A045797 1,2
%A A045797 _J. H. Conway_
%E A045797 More terms from _Erich Friedman_
%E A045797 Offset changed by _Reinhard Zumkeller_, Dec 10 2011