This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045817 #16 Sep 08 2018 04:22:53 %S A045817 3602,246506,264533,266405,303652,320556,324255,325605,342560,345064, %T A045817 345406,345604,346340,362055,414056,430462,434630,435065,436430, %U A045817 436550,453605,500426,500641,506022,524360,524406,526433,530632,532650,533402 %N A045817 Numbers n written in base 7, where in the list of divisors of n (in base 7), each digit 0-6 appears equally often. %H A045817 Robert Israel, <a href="/A045817/b045817.txt">Table of n, a(n) for n = 1..161</a> %H A045817 N. Nomoto, <a href="http://www.geocities.co.jp/Technopolis/1793/09digit.htm">In the list of divisors of n,... </a> [broken link] %e A045817 E.g., divisors of 342560 (base 7) are (1,2,10,20,15463,34256,154630,342560) (all in base 7); the numbers of digits (0-6) are [0(4),1(4),2(4),3(4),4(4),5(4),6(4)]. %p A045817 N:= 7^6: %p A045817 cv7:= proc(n) local L; L:= convert(n,base,7); %p A045817 add(L[i]*10^(i-1),i=1..nops(L)) end proc: %p A045817 V:= Matrix(N,7,datatype=integer[8]): %p A045817 count:= 0: Res:= NULL: %p A045817 for i from 1 to N do %p A045817 L:= convert(i,base,7); %p A045817 M:= Vector[row]([seq(numboccur(d,L),d=0..6)],datatype=integer[8]); %p A045817 for r from i to N by i do V[r,..]:= V[r,..] + M od; %p A045817 if nops(convert(V[i,..],set))=1 then %p A045817 count:= count+1; %p A045817 w:= cv7(i); %p A045817 Res:= Res,w; %p A045817 fi %p A045817 od: %p A045817 Res; # _Robert Israel_, Sep 07 2018 %Y A045817 Cf. A038564, A038565, A045818. %K A045817 easy,nonn,base %O A045817 1,1 %A A045817 _Naohiro Nomoto_ %E A045817 Definition clarified by _Robert Israel_, Sep 07 2018