cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045820 Theta series of D8 lattice with respect to midpoint of edge.

This page as a plain text file.
%I A045820 #19 Jul 25 2017 04:11:56
%S A045820 2,24,124,368,746,1288,2220,3536,4964,6904,9536,12112,15630,20592,
%T A045820 24588,29632,37472,43296,50492,61456,68724,79560,95404,104352,118226,
%U A045820 137392,148636,167920,191904,204712
%N A045820 Theta series of D8 lattice with respect to midpoint of edge.
%H A045820 Vincenzo Librandi, <a href="/A045820/b045820.txt">Table of n, a(n) for n = 0..1000</a>
%F A045820 G.f.: (1/2)*(theta_2^2*theta_3^6).
%F A045820 Expansion of q^(-1/2) * 2 * (eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2))^4 in powers of q. - _Michael Somos_, Jul 24 2017
%t A045820 terms = 30; List @@ Normal[(1/2)*EllipticTheta[2, 0, z]^2*EllipticTheta[3, 0, z]^6 + O[z]^terms] /. z -> 1 (* _Jean-François Alcover_, Jul 06 2017 *)
%t A045820 a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 3, 0, x]^4 / (8 Sqrt[x]), {x, 0, n}]; (* _Michael Somos_, Jul 24 2017 *)
%o A045820 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( (eta( x^2 + A)^7 / (eta( x + A)^3 * eta( x^4 + A)^2))^4, n))}; /* _Michael Somos_, Jul 24 2017 */
%Y A045820 Cf. A045822.
%K A045820 nonn
%O A045820 0,1
%A A045820 _N. J. A. Sloane_