cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045828 One fourth of theta series of cubic lattice with respect to face.

This page as a plain text file.
%I A045828 #28 Feb 16 2025 08:32:38
%S A045828 1,2,2,4,3,2,6,4,4,6,4,4,7,8,2,8,8,4,10,4,4,10,10,8,9,4,6,12,8,6,10,
%T A045828 12,4,14,8,4,16,10,8,8,9,10,12,12,8,12,12,4,20,10,6,20,8,6,10,12,8,20,
%U A045828 18,8,11,12,12,16,8,6,20,16,12,14,8,12,20,14,6,12,20,8,26,12,8,22,8,12,15
%N A045828 One fourth of theta series of cubic lattice with respect to face.
%C A045828 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A045828 Number of solutions to n = t1 + t2 + 2*t3 where  t1, t2, t3 are triangular numbers. - _Michael Somos_, Jan 02 2006
%C A045828 The cubic lattice is the set of triples [a, b, c] where the entries are all integers. A face is centered at a triple where one entry is an integer and the other two are one half an odd integer. - _Michael Somos_, Jun 29 2012
%D A045828 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
%H A045828 Seiichi Manyama, <a href="/A045828/b045828.txt">Table of n, a(n) for n = 0..10000</a>
%H A045828 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A045828 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A045828 Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^2) / eta(q)^2 in powers of q. - _Michael Somos_, Jan 02 2006
%F A045828 Expansion of phi(x) * psi(x^2)^2 = psi(x)^2 * psi(x^2) = psi(x)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Jun 29 2012
%F A045828 Euler transform of period 4 sequence [2, -1, 2, -3, ...]. - _Michael Somos_, Mar 05 2003
%F A045828 Convolution of A033761 and A010054. - _Michael Somos_, Jun 29 2012
%F A045828 G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (1/2)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A212885. - _Michael Somos_, Sep 08 2018
%e A045828 G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + 6*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ...
%e A045828 G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + 3*q^9 + 2*q^11 + 6*q^13 + 4*q^15 + 4*q^17 + ...
%t A045828 a[ n_] := SeriesCoefficient[ 1/4 EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x]^2, {x, 0, n + 1/2}]; (* _Michael Somos_, Jun 29 2012 *)
%t A045828 a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, x^2] EllipticTheta[ 2, 0, x]^2, {x, 0, 2 n + 1}]; (* _Michael Somos_, Jun 29 2012 *)
%t A045828 QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^2)/QP[q]^2 + O[q]^90; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 27 2015, adapted from PARI *)
%o A045828 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^2, n))}; /* _Michael Somos_, Oct 25 2006 */
%Y A045828 Cf. A005877, A005884, A033761, A010054, A033763, A212885.
%K A045828 nonn
%O A045828 0,2
%A A045828 _N. J. A. Sloane_
%E A045828 Edited by _Michael Somos_, Mar 05 2003