cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045834 Half of theta series of cubic lattice with respect to edge.

This page as a plain text file.
%I A045834 #29 Feb 16 2025 08:32:38
%S A045834 1,4,5,4,8,8,5,12,8,4,16,12,9,12,8,12,16,16,8,16,17,8,24,8,8,28,16,12,
%T A045834 16,20,13,24,24,8,16,16,16,28,24,12,32,16,13,28,8,20,32,32,8,20,24,16,
%U A045834 40,16,16,32,25,20,24,24,24,28,24,8,32,36,16,44,16,12,40,32,17,36,32
%N A045834 Half of theta series of cubic lattice with respect to edge.
%C A045834 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A045834 Robert Israel, <a href="/A045834/b045834.txt">Table of n, a(n) for n = 0..10000</a>
%H A045834 J. H. Conway and N. J. A. Sloane, <a href="http://dx.doi.org/10.1007/978-1-4757-2016-7">Sphere Packings, Lattices and Groups</a>, Springer-Verlag, p. 107.
%H A045834 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A045834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A045834 Euler transform of period 4 sequence [ 4, -5, 4, -3,...]. - _Michael Somos_, Feb 28 2006
%F A045834 Expansion of theta_2(q^2)^2 * (theta_3(q) + theta_4(q)) / (8*q) in powers of q^4. - _Michael Somos_, Feb 28 2006
%F A045834 Expansion of q^(-1/4) * eta(q^2)^9 / (eta(q)^4 * eta(q^4)^2) in powers of q. - _Michael Somos_, Feb 28 2006
%F A045834 G.f.: Product_{k>0} (1 + x^k)^4 * (1 - x^(2*k))^3 / (1 + x^(2*k))^2. - _Michael Somos_, Feb 28 2006
%F A045834 Expansion of phi(x)^2 * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Oct 25 2006
%F A045834 A005876(n) = 2*a(n).
%e A045834 G.f. = 1 + 4*x + 5*x^2 + 4*x^3 + 8*x^4 + 8*x^5 + 5*x^6 + 12*x^7 + 8*x^8 + ...
%e A045834 G.f. = q + 4*q^5 + 5*q^9 + 4*q^13 + 8*q^17 + 8*q^21 + 5*q^25 + 12*q^29 + ...
%p A045834 S:= series((1/8)*JacobiTheta2(0, sqrt(q))^2*(JacobiTheta3(0, q^(1/4))+JacobiTheta4(0, q^(1/4)))/q^(1/4), q, 1001):
%p A045834 seq(coeff(S,q,j),j=0..1000); # _Robert Israel_, Nov 13 2016
%t A045834 s = EllipticTheta[3, 0, q]^2*EllipticTheta[2, 0, q]/(2*q^(1/4)) + O[q]^75; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 04 2015, from 5th formula *)
%t A045834 QP = QPochhammer; s = QP[q^2]^9/(QP[q]^4*QP[q^4]^2) + O[q]^80; CoefficientList[s, q] (* _Jean-François Alcover_, Dec 01 2015, adapted from PARI *)
%o A045834 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 +A)^9 / (eta(x + A)^4 * eta(x^4 + A)^2), n))}; /* _Michael Somos_, Feb 28 2006 */
%Y A045834 Cf. A005876.
%K A045834 nonn
%O A045834 0,2
%A A045834 _N. J. A. Sloane_