cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045836 Half of theta series of b.c.c. lattice with respect to long edge.

This page as a plain text file.
%I A045836 #26 Feb 16 2025 08:32:38
%S A045836 1,2,0,0,4,4,0,0,5,4,0,0,4,8,0,0,8,6,0,0,8,4,0,0,5,12,0,0,12,8,0,0,8,
%T A045836 8,0,0,4,12,0,0,16,8,0,0,12,8,0,0,9,14,0,0,12,16,0,0,8,4,0,0,12,16,0,
%U A045836 0,16,16,0,0,16,8,0,0,8,20,0,0,16,8,0,0,17
%N A045836 Half of theta series of b.c.c. lattice with respect to long edge.
%C A045836 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A045836 The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer. A long edge is centered at a triple with two integer entries and the remaining entry is one half an odd integer. - _Michael Somos_, May 31 2012
%H A045836 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A045836 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A045836 From _Michael Somos_, May 31 2012: (Start)
%F A045836 Expansion of x * phi(x) * psi(x^4)^2 = x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
%F A045836 Expansion of eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
%F A045836 Euler transform of period 8 sequence [ 2, -3, 2, 1, 2, -3, 2, -3, ...].
%F A045836 a(4*n) = a(4*n + 3) = 0. a(n) = A004025(n) / 2. a(4*n + 1) = A045834(n). a(4*n + 2) = 2 * A045828(n). (End)
%e A045836 q + 2*q^2 + 4*q^5 + 4*q^6 + 5*q^9 + 4*q^10 + 4*q^13 + 8*q^14 + 8*q^17 + ...
%t A045836 a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Nov 05 2015, adapted from PARI *)
%o A045836 (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* _Michael Somos_, May 31 2012 */
%Y A045836 Cf. A004025, A045828, A045834.
%K A045836 nonn
%O A045836 1,2
%A A045836 _N. J. A. Sloane_