This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045877 #23 Feb 16 2025 08:32:38 %S A045877 1,2,3,16,21,31,129,221,247,258,1062,1593,1964,2221,13516,17287,18516, %T A045877 19821,22221,28064,29631,103764,182362,222221,273543,1246713,1509437, %U A045877 1635219,1856538,2222221,2253804,2749249,2784807,11619096,11949507 %N A045877 Rotating digits of a(n)^2 right once still yields a square. %C A045877 Squares resulting in leading zeros excluded. %C A045877 (2*10^k-11)/9 are terms, i.e. A165402 is a subsequence. - _Chai Wah Wu_, Apr 23 2022 %H A045877 Chai Wah Wu, <a href="/A045877/b045877.txt">Table of n, a(n) for n = 1..1838</a> %H A045877 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a> %e A045877 13516^2 = 18268225{6} -> {6}18268225 = 24865^2. %o A045877 (Python) %o A045877 from itertools import count, islice %o A045877 from sympy.solvers.diophantine.diophantine import diop_DN %o A045877 def A045877_gen(): # generator of terms %o A045877 for l in count(0): %o A045877 l1, l2 = 10**(l+1), 10**l %o A045877 yield from sorted(set(abs(x) for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2)) %o A045877 A045877_list = list(islice(A045877_gen(),30)) # _Chai Wah Wu_, Apr 23 2022 %Y A045877 Cf. A000290, A045878, A035126, A035128, A165402. %K A045877 nonn,base %O A045877 1,2 %A A045877 _Erich Friedman_ %E A045877 More terms from _Patrick De Geest_, Nov 15 1998