cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045900 Hypothetical numbers of terms in general expressions for coefficients of Lovelock Lagrangians.

This page as a plain text file.
%I A045900 #18 Jul 05 2025 08:09:06
%S A045900 1,1,3,8,25,85,318,1234,4884,19458,77727,310761,1242853,4971151,
%T A045900 19884270,79536639,318145993,1272583241,5090332042,20361326983,
%U A045900 81445306447,325781223902,1303124893253,5212499570050,20849998276525,83399993101506,333599972400353
%N A045900 Hypothetical numbers of terms in general expressions for coefficients of Lovelock Lagrangians.
%C A045900 Hypothetical extension of sequence A006372.
%H A045900 Vaclav Kotesovec, <a href="/A045900/b045900.txt">Table of n, a(n) for n = 0..1000</a>
%H A045900 C. C. Briggs, <a href="http://arXiv.org/abs/gr-qc/9607033">A General Expression for the Quintic Lovelock Tensor</a>, arXiv:gr-qc/9607033, 1996-1997.
%H A045900 C. C. Briggs, <a href="http://arXiv.org/abs/gr-qc/9703074">A General Expression for the Quartic Lovelock Tensor</a>, arXiv:gr-qc/9703074, 1997.
%H A045900 C. C. Briggs, <a href="http://arXiv.org/abs/gr-qc/9808050">Some Possible Features of General Expressions for Lovelock Tensors ...</a>, arXiv:gr-qc/9808050, 1998-2000.
%F A045900 a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) + p(n+3) - 3*p(n+2) + 3*p(n+1) - p(n) + 2^(2*n + 1); a(n+4) = 7*a(n+3) - 15*a(n+2) + 13*a(n+1) - 4*a(n) + p(n+4) - 7*p(n+3) + 15*p(n+2) - 13*p(n+1) + 4*p(n); where p(n) is the partition function (i.e. number of partitions of n, A000041) and where p(0) = 1.
%F A045900 a(n) ~ 2^(2*n+1) / 27. - _Vaclav Kotesovec_, Jul 05 2025
%t A045900 p = PartitionsP;
%t A045900 a[n_] := a[n] = If[n < 4, {1, 1, 3, 8}[[n+1]], a[n-3] - 3*a[n-2] + 3*a[n-1] - p[n-3] + 3*p[n-2] - 3*p[n-1] + p[n] + 2^(2*(n-3) + 1)];
%t A045900 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 24 2019 *)
%Y A045900 Cf. A000041, A006372.
%K A045900 nonn
%O A045900 0,3
%A A045900 C. C. Briggs (ccb104(AT)psu.edu)
%E A045900 More terms from _Jean-François Alcover_, Feb 24 2019