A045912 Triangle of coefficients of characteristic polynomial of negative Pascal matrix with (i,j)-th entry -C(i+j-2,i-1).
1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 29, 72, 29, 1, 1, 99, 626, 626, 99, 1, 1, 351, 6084, 13869, 6084, 351, 1, 1, 1275, 64974, 347020, 347020, 64974, 1275, 1, 1, 4707, 744193, 9952274, 21537270, 9952274, 744193, 4707, 1, 1, 17577, 8965323, 321541977, 1545936516, 1545936516, 321541977, 8965323, 17577, 1
Offset: 0
Examples
1; 1,1; 1,3,1; 1,9,9,1; 1,29,72,29,1; ...
Links
- P. Di Francesco, P. Zinn-Justin and J.-B. Zuber, Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops, arXiv:math-ph/0410002, 2004.
- W. F. Lunnon, The Pascal matrix, Fib. Quart. vol. 15 (1977) pp. 201-204.
- Luca Guido Molinari, Graphene nanocones and Pascal matrices, arXiv:2206.14428 [math.CO], 2022.
Programs
-
Mathematica
P[n_] := Table[Binomial[i + j - 2, i - 1], {i, 1, n}, {j, 1, n}]; row[0] = {1}; row[n_] := CoefficientList[ CharacteristicPolynomial[P[n], x], x] // Abs; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2018 *)
-
PARI
T(n,k)=if(n<0,0,(-1)^(n+k)*polcoeff(charpoly(matrix(n,n,i,j,binomial(i+j-2,i-1))),k))
-
PARI
T(n,k)=if(n<0,0,polcoeff(charpoly(-matrix(n,n,i,j,binomial(i+j-2,i-1))),k))