A045923 Number of irreducible representations of symmetric group S_n for which every matrix has determinant 1.
1, 1, 1, 2, 2, 7, 7, 10, 10, 34, 40, 53, 61, 103, 112, 143, 145, 369, 458, 579, 712, 938, 1127, 1383, 1638, 2308, 2754, 3334, 3925, 5092, 5818, 6989, 7759, 12278, 14819, 17881, 21477, 25887, 30929, 36954, 43943, 52918, 62749, 74407, 87854, 104534, 122706, 144457
Offset: 1
Examples
a(5)=2, since only the irreducible representations indexed by the partitions (5) and (3,2) are contained in the special linear group.
References
- R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge and New York, 1999, Exercise 7.55.
Links
- Amritanshu Prasad, Table of n, a(n) for n = 1..999
- A. Ayyer, A. Prasad and S. Spallone, Representations of symmetric groups with non-trivial determinant, arXiv:1604.08837 [math.RT] (2016).
Programs
-
Mathematica
b[1] = 0; b[n_] := Module[{bb, e, pos, k, r}, bb = Reverse[IntegerDigits[n, 2]]; e = bb[[1]]; pos = DeleteCases[Flatten[Position[bb, 1]], 1] - 1; r = Length[pos]; Do[k[i] = pos[[i]], {i, 1, r}]; 2^Sum[k[i], {i, 2, r}] (2^(k[1] - 1) + Sum[2^((v + 1) (k[1] - 2) - v (v - 1)/2), {v, 1, k[1] - 1}] + e 2^(k[1] (k[1] - 1)/2)) ]; a[n_] := PartitionsP[n] - b[n]; Array[a, 50] (* Jean-François Alcover, Aug 09 2018, after Amritanshu Prasad *)
Formula
Extensions
a(31)-a(48) from Amritanshu Prasad, May 11 2016
Comments