This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045939 #37 Mar 08 2023 16:18:15 %S A045939 33,85,93,121,141,170,201,213,217,244,284,301,393,428,434,445,506,602, %T A045939 603,604,633,637,697,841,921,962,1041,1074,1083,1084,1130,1137,1244, %U A045939 1261,1274,1309,1345,1401,1412,1430,1434,1448,1490,1532,1556,1586,1604 %N A045939 Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities). %H A045939 Charles R Greathouse IV, <a href="/A045939/b045939.txt">Table of n, a(n) for n = 1..10000</a> %t A045939 f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2],AppendTo[lst,n]],{n,0,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, May 12 2010 *) %t A045939 pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700],pd2Q] (* _Harvey P. Dale_, Apr 19 2011 *) %t A045939 SequencePosition[PrimeOmega[Range[1700]],{x_,x_,x_}][[;;,1]] (* _Harvey P. Dale_, Mar 08 2023 *) %o A045939 (PARI) is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ _Charles R Greathouse IV_, Sep 14 2015 %o A045939 (PARI) list(lim)=my(v=List(),a=1,b=1,c); forfactored(n=4,lim\1+2,c=bigomega(n); if(a==b&&a==c, listput(v,n[1]-2)); a=b; b=c); Vec(v) \\ _Charles R Greathouse IV_, May 07 2020 %Y A045939 Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10). %Y A045939 A056809 is a subsequence. %Y A045939 Cf. A006073. - _Harvey P. Dale_, Apr 19 2011 %K A045939 nonn,easy %O A045939 1,1 %A A045939 _David W. Wilson_