cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045949 Number of equilateral triangles formed out of matches that can be found in a hexagonal chunk of side length n in hexagonal array of matchsticks.

This page as a plain text file.
%I A045949 #58 Mar 21 2025 13:08:03
%S A045949 0,6,38,116,262,496,840,1314,1940,2738,3730,4936,6378,8076,10052,
%T A045949 12326,14920,17854,21150,24828,28910,33416,38368,43786,49692,56106,
%U A045949 63050,70544,78610,87268,96540,106446,117008,128246,140182,152836,166230,180384,195320,211058
%N A045949 Number of equilateral triangles formed out of matches that can be found in a hexagonal chunk of side length n in hexagonal array of matchsticks.
%H A045949 N. J. A. Sloane, <a href="/A045949/a045949.jpg">Illustration of a(1)=6</a>
%H A045949 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). [From _R. J. Mathar_, Sep 03 2010]
%F A045949 a(n) = floor(n*(14*n^2 + 9*n + 2)/4).
%F A045949 From _R. J. Mathar_, Sep 03 2010: (Start)
%F A045949 a(n) = +3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
%F A045949 G.f.: 2*x*(3+10*x+7*x^2+x^3) / ( (1+x)*(1-x)^4 ).
%F A045949 a(n) = (28*n^3 + 18*n^2 + 4*n - 1 + (-1)^n)/8. (End)
%F A045949 a(n) = A033581(n) + A307253(n). - _John King_, Apr 04 2019
%F A045949 E.g.f.: (x*(25 + 51*x + 14*x^2)*exp(x) - sinh(x))/4. - _G. C. Greubel_, Apr 05 2019
%t A045949 LinearRecurrence[{3,-2,-2,3,-1},{0,6,38,116,262},40] (* or *) CoefficientList[Series[(2*x*(x*(x+2)*(x+5)+3))/((x-1)^4*(x+1)),{x,0,40}],x] (* _Harvey P. Dale_, Jun 11 2011 *)
%o A045949 (Maxima) A045949(n):=floor(n*(14*n^2+9*n+2)/4)$
%o A045949 makelist(A045949(n),n,0,30); /* _Martin Ettl_, Nov 03 2012 */
%o A045949 (R) floor(1:25*(14*(1:25)^2+9*(1:25)+2)/4) # _Christian N. K. Anderson_, Apr 27 2013
%o A045949 (PARI) {a(n) = (28*n^3 +18*n^2 +4*n -1 +(-1)^n)/8}; \\ _G. C. Greubel_, Apr 05 2019
%o A045949 (Magma) [(28*n^3 +18*n^2 +4*n -1 +(-1)^n)/8: n in [0..40]]; // _G. C. Greubel_, Apr 05 2019
%o A045949 (Sage) [(28*n^3 +18*n^2 +4*n -1 +(-1)^n)/8 for n in (0..40)] # _G. C. Greubel_, Apr 05 2019
%o A045949 (GAP) List([0..40], n-> (28*n^3 +18*n^2 +4*n -1 +(-1)^n)/8); # _G. C. Greubel_, Apr 05 2019
%Y A045949 See A008893 for a related sequence.
%Y A045949 For hexagons, the number of matches required is A045945, the number of size=1 triangles is A033581, the larger triangles is A307253 and the total number is A045949.  For the analogs for triangles see A045943 and for stars see A045946. - _John King_, Apr 05 2019
%K A045949 nonn
%O A045949 0,2
%A A045949 _R. K. Guy_
%E A045949 Edited by _N. J. A. Sloane_, May 29 2012