This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045966 #35 Oct 29 2022 09:16:00 %S A045966 3,5,7,25,11,35,13,125,49,55,17,175,19,65,77,625,23,245,29,275,91,85, %T A045966 31,875,121,95,343,325,37,385,41,3125,119,115,143,1225,43,145,133, %U A045966 1375,47,455,53,425,539,155,59,4375,169,605,161,475,61,1715,187,1625,203,185,67 %N A045966 a(1)=3; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^e_i. %C A045966 If we had a(1) = 1 (instead of 3), then this would be fully multiplicative with a(prime(k)) = prime(k+2) (see A357852). - _Antti Karttunen_, Jan 10 2020 %D A045966 From a puzzle proposed by _Marc LeBrun_. %H A045966 Reinhard Zumkeller, <a href="/A045966/b045966.txt">Table of n, a(n) for n = 1..10000</a> %F A045966 From _Peter Munn_, Dec 27 2019, for n >= 2, k >= 2: (Start) %F A045966 a(n) = A003961^2(n). %F A045966 a(n^k) = a(n)^k. %F A045966 a(A003961(n)) = A003961(a(n)). %F A045966 a(A059896(n,k)) = A059896(a(n), a(k)). %F A045966 (End) %t A045966 a[1] = 3; a[n_] := With[{f = FactorInteger[n]}, Times @@ (Prime[PrimePi[f[[All, 1]]]+2]^f[[All, 2]])]; Array[a, 60] (* _Jean-François Alcover_, Jun 19 2015 *) %o A045966 (Haskell) %o A045966 a045966 1 = 3 %o A045966 a045966 n = product $ zipWith (^) %o A045966 (map a101300 $ a027748_row n) (a124010_row n) %o A045966 -- _Reinhard Zumkeller_, Jun 03 2013, Dec 23 2011 %o A045966 (PARI) A045966(n) = if(1==n,3,my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(1+nextprime(1+f[i, 1]))); factorback(f)); \\ _Antti Karttunen_, Jan 10 2020 %Y A045966 See A027748, A124010 for factorization data for n. %Y A045966 Cf. A000040, A003961, A101300. %Y A045966 Sequences with similar definitions: A045967, A045968, A045970, A126272. %Y A045966 A059896 is used to express relationship between terms of this sequence. %Y A045966 A357852 is a slightly better version. - _N. J. A. Sloane_, Oct 29 2022 %K A045966 easy,nonn,nice %O A045966 1,1 %A A045966 _N. J. A. Sloane_ %E A045966 More terms from _David W. Wilson_