This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045975 #20 Jul 02 2025 16:01:56 %S A045975 1,2,4,9,15,21,24,28,32,36,45,55,65,75,85,90,96,102,108,114,120,133, %T A045975 147,161,175,189,203,217,224,232,240,248,256,264,272,280,297,315,333, %U A045975 351,369,387,405,423,441,450,460,470,480,490,500,510,520,530,540,561,583,605,627,649,671,693 %N A045975 Take the first odd integer and multiple of 1, the next 2 even integers and multiples of 2, the next 3 odd integers and multiples of 3, the next 4 even integers and multiples of 4, ... %C A045975 A generalized Connell sequence. %H A045975 Reinhard Zumkeller, <a href="/A045975/b045975.txt">Rows n=1..150 of triangle, flattened</a> %e A045975 Triangle begins: %e A045975 1; %e A045975 2, 4; %e A045975 9, 15, 21; %e A045975 24, 28, 32, 36; %e A045975 45, 55, 65, 75, 85; %e A045975 90, 96, 102, 108, 114, 120; %e A045975 133, 147, 161, 175, 189, 203, 217; %e A045975 ... %t A045975 first[n_?EvenQ] := (n - 1)*n^2/2; first[n_?OddQ] := n*(n^2 - 2n + 3)/2; row[n_] := (ro = {first[n]}; next = first[n] + n; While[ Length[ro] < n, If[Mod[next , 2] == Mod[n, 2], AppendTo[ro, next]]; next = next + n]; ro); Flatten[ Table[row[n], {n, 1, 11}]](* _Jean-François Alcover_, Jun 08 2012 *) %o A045975 (Haskell) %o A045975 a045975 n k = a045975_tabl !! (n-1) !! (k-1) %o A045975 a045975_row n = a045975_tabl !! (n-1) %o A045975 a045975_tabl = f 1 [1..] where %o A045975 f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where %o A045975 ys | even k = take k ms %o A045975 | otherwise = take k $ filter odd ms %o A045975 ms = filter ((== 0) . (`mod` k)) xs %o A045975 -- _Reinhard Zumkeller_, Jan 18 2012 %Y A045975 Cf. A001614, A033291. %Y A045975 Seen as a triangle read by rows: cf. A204558 (row sums), A005917 (central terms), A204556 (left edge), A204557 (right edge). %K A045975 nonn,easy,nice,tabl %O A045975 1,2 %A A045975 Fang-kuo Huang (gsyps(AT)ms17.hinet.net) %E A045975 More terms from _James Sellers_ %E A045975 Keyword tabl added by _Reinhard Zumkeller_, Jan 18 2012