cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).

This page as a plain text file.
%I A046008 #27 Feb 16 2025 08:32:38
%S A046008 167,271,659,967,1283,1303,1307,1459,1531,1699,2027,2267,2539,2731,
%T A046008 2851,2971,3203,3347,3499,3739,3931,4051,5179,5683,6163,6547,7027,
%U A046008 7507,7603,7867,8443,9283,9403,9643,9787,10987,13003,13267,14107,14683,15667
%N A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).
%H A046008 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H A046008 Duncan A. Buell, <a href="https://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046008 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H A046008 C. Wagner, <a href="https://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046008 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046008 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046008 Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%o A046008 (PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11};
%o A046008 for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ _G. C. Greubel_, Mar 01 2019
%o A046008 (Sage) [n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # _G. C. Greubel_, Mar 01 2019
%Y A046008 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%Y A046008 Cf. A191410.
%K A046008 nonn,fini,full
%O A046008 1,1
%A A046008 _Eric W. Weisstein_
%E A046008 a(40)-a(41) from _Giovanni Resta_, Mar 20 2013