cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).

This page as a plain text file.
%I A046009 #26 Feb 16 2025 08:32:38
%S A046009 231,255,327,356,440,516,543,655,680,687,696,728,731,744,755,804,888,
%T A046009 932,948,964,984,996,1011,1067,1096,1144,1208,1235,1236,1255,1272,
%U A046009 1336,1355,1371,1419,1464,1480,1491,1515,1547,1572,1668,1720,1732
%N A046009 Discriminants of imaginary quadratic fields with class number 12 (negated).
%C A046009 206 discriminants in this sequence (almost certainly but not proved).
%H A046009 Andrew Howroyd, <a href="/A046009/b046009.txt">Table of n, a(n) for n = 1..206</a>
%H A046009 Steven Arno, M. L. Robinson and Ferrel S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arithm. 83.4 (1998), 295-330
%H A046009 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046009 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046009 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046009 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046009 Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%o A046009 (PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ _Andrew Howroyd_, Jul 24 2018
%o A046009 (Sage) [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # _G. C. Greubel_, Mar 01 2019
%Y A046009 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%Y A046009 Cf. A191410.
%K A046009 nonn,fini
%O A046009 1,1
%A A046009 _Eric W. Weisstein_