This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046011 #23 Feb 16 2025 08:32:38 %S A046011 215,287,391,404,447,511,535,536,596,692,703,807,899,1112,1211,1396, %T A046011 1403,1527,1816,1851,1883,2008,2123,2147,2171,2335,2427,2507,2536, %U A046011 2571,2612,2779,2931,2932,3112,3227,3352,3579,3707,3715,3867,3988 %N A046011 Discriminants of imaginary quadratic fields with class number 14 (negated). %C A046011 There are 95 discriminants in this sequence (almost certainly but not proved). %H A046011 Andrew Howroyd, <a href="/A046011/b046011.txt">Table of n, a(n) for n = 1..95</a> %H A046011 Steven Arno, M. L. Robinson and Ferrel S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arithm. 83.4 (1998), 295-330 %H A046011 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796. %H A046011 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996. %H A046011 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a> %H A046011 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %t A046011 Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 14, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *) %o A046011 (PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 14} \\ _Andrew Howroyd_, Jul 24 2018 %Y A046011 Cf. A006203, A013658, A014602, A014603, A046002-A046020. %K A046011 nonn,fini %O A046011 1,1 %A A046011 _Eric W. Weisstein_