cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046012 Discriminants of imaginary quadratic fields with class number 15 (negated).

This page as a plain text file.
%I A046012 #26 Feb 16 2025 08:32:38
%S A046012 239,439,751,971,1259,1327,1427,1567,1619,2243,2647,2699,2843,3331,
%T A046012 3571,3803,4099,4219,5003,5227,5323,5563,5827,5987,6067,6091,6211,
%U A046012 6571,7219,7459,7547,8467,8707,8779,9043,9907,10243,10267,10459,10651
%N A046012 Discriminants of imaginary quadratic fields with class number 15 (negated).
%C A046012 68 discriminants in this sequence (proved).
%H A046012 R. J. Mathar, <a href="/A046012/b046012.txt">Table of n, a(n) for n=1..68</a> (full sequence)
%H A046012 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H A046012 Duncan A. Buell, <a href="https://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046012 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H A046012 C. Wagner, <a href="https://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046012 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046012 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046012 Reap[ For[n = 1, n < 12000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 15, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%Y A046012 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%K A046012 nonn,fini,full
%O A046012 1,1
%A A046012 _Eric W. Weisstein_