cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).

This page as a plain text file.
%I A046013 #27 Feb 16 2025 08:32:38
%S A046013 399,407,471,559,584,644,663,740,799,884,895,903,943,1015,1016,1023,
%T A046013 1028,1047,1139,1140,1159,1220,1379,1412,1416,1508,1560,1595,1608,
%U A046013 1624,1636,1640,1716,1860,1876,1924,1983,2004,2019,2040,2056,2072
%N A046013 Discriminants of imaginary quadratic fields with class number 16 (negated).
%C A046013 322 discriminants in this sequence (almost certainly but not proved).
%H A046013 Andrew Howroyd, <a href="/A046013/b046013.txt">Table of n, a(n) for n = 1..322</a>
%H A046013 Steven Arno, M. L. Robinson and Ferrel S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arithm. 83.4 (1998), 295-330
%H A046013 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046013 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046013 Victor Y. Wang, <a href="http://arxiv.org/abs/1508.06552">On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields</a>, arXiv preprint arXiv:1508.06552, 2015
%H A046013 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046013 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046013 Reap[ For[n = 1, n < 3000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 16, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%o A046013 (PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 16} \\ _Andrew Howroyd_, Jul 24 2018
%Y A046013 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%K A046013 nonn,fini
%O A046013 1,1
%A A046013 _Eric W. Weisstein_