This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046014 #20 Feb 16 2025 08:32:38 %S A046014 383,991,1091,1571,1663,1783,2531,3323,3947,4339,4447,4547,4651,5483, %T A046014 6203,6379,6451,6827,6907,7883,8539,8731,9883,11251,11443,12907,13627, %U A046014 14083,14779,14947,16699,17827,18307,19963,21067,23563,24907,25243,26083,26107,27763,31627,33427,36523,37123 %N A046014 Discriminants of imaginary quadratic fields with class number 17 (negated). %C A046014 45 discriminants in this sequence (proved). %H A046014 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330. %H A046014 Duncan A. Buell, <a href="https://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796. %H A046014 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a> %H A046014 C. Wagner, <a href="https://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996. %H A046014 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a> %H A046014 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %t A046014 Reap[ For[n = 1, n < 40000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 17, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *) %Y A046014 Cf. A006203, A013658, A014602, A014603, A046002-A046020. %K A046014 nonn,fini,full %O A046014 1,1 %A A046014 _Eric W. Weisstein_