cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046015 Discriminants of imaginary quadratic fields with class number 18 (negated).

This page as a plain text file.
%I A046015 #25 Feb 16 2025 08:32:38
%S A046015 335,519,527,679,1135,1172,1207,1383,1448,1687,1691,1927,2047,2051,
%T A046015 2167,2228,2291,2315,2344,2644,2747,2859,3035,3107,3543,3544,3651,
%U A046015 3688,4072,4299,4307,4568,4819,4883,5224,5315,5464,5492,5539,5899
%N A046015 Discriminants of imaginary quadratic fields with class number 18 (negated).
%C A046015 The class group of Q[sqrt(-d)] is isomorphic to C_3 X C_6 for d = 9748, 12067, 16627, 17131, 19651, 22443, 23683, 34027, 34507. For all other known d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_18. - _Jianing Song_, Dec 01 2019
%H A046015 Jianing Song, <a href="/A046015/b046015.txt">Table of n, a(n) for n = 1..150</a>
%H A046015 Steven Arno, M. L. Robinson and Ferrel S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arithm. 83.4 (1998), 295-330
%H A046015 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046015 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046015 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046015 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046015 Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 18, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%Y A046015 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%K A046015 nonn,fini
%O A046015 1,1
%A A046015 _Eric W. Weisstein_