cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046018 Discriminants of imaginary quadratic fields with class number 21 (negated).

This page as a plain text file.
%I A046018 #26 Feb 16 2025 08:32:38
%S A046018 431,503,743,863,1931,2503,2579,2767,2819,3011,3371,4283,4523,4691,
%T A046018 5011,5647,5851,5867,6323,6691,7907,8059,8123,8171,8243,8387,8627,
%U A046018 8747,9091,9187,9811,9859,10067,10771,11731,12107,12547,13171,13291
%N A046018 Discriminants of imaginary quadratic fields with class number 21 (negated).
%C A046018 85 discriminants in this sequence (proved).
%H A046018 Giovanni Resta, <a href="/A046018/b046018.txt">Table of n, a(n) for n = 1..85</a> (full sequence, from Weisstein's World of Mathematics)
%H A046018 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H A046018 Duncan A. Buell, <a href="https://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046018 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H A046018 C. Wagner, <a href="https://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046018 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%t A046018 Reap[ For[n = 1, n < 14000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 21, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)
%Y A046018 Cf. A006203, A013658, A014602, A014603, A046002 - A046020.
%K A046018 nonn,fini,full
%O A046018 1,1
%A A046018 _Eric W. Weisstein_