cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046020 Discriminants of imaginary quadratic fields with class number 23 (negated).

This page as a plain text file.
%I A046020 #29 Feb 16 2025 08:32:38
%S A046020 647,1039,1103,1279,1447,1471,1811,1979,2411,2671,3491,3539,3847,3923,
%T A046020 4211,4783,5387,5507,5531,6563,6659,6703,7043,9587,9931,10867,10883,
%U A046020 12203,12739,13099,13187,15307,15451,16267,17203,17851,18379,20323
%N A046020 Discriminants of imaginary quadratic fields with class number 23 (negated).
%H A046020 Giovanni Resta, <a href="/A046020/b046020.txt">Table of n, a(n) for n = 1..68</a> (full sequence, from Steven Arno et al.)
%H A046020 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H A046020 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H A046020 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H A046020 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H A046020 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H A046020 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t A046020 Reap[ Do[ If[ NumberFieldClassNumber[ Sqrt[-n] ] == 23, d = -NumberFieldDiscriminant[ Sqrt[-n] ]; Print[d]; Sow[d]], {n, 1, 21000}]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 22 2012 *)
%o A046020 (PARI) select(n->qfbclassno(-n)==23, vector(22696, n, 4*n+3)) \\ _Charles R Greathouse IV_, Apr 25 2013
%Y A046020 Cf. A006203, A013658, A014602, A014603, A046002-A046020.
%K A046020 nonn,fini,full
%O A046020 1,1
%A A046020 _Eric W. Weisstein_
%E A046020 68 discriminants in this sequence (proved).