This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046020 #29 Feb 16 2025 08:32:38 %S A046020 647,1039,1103,1279,1447,1471,1811,1979,2411,2671,3491,3539,3847,3923, %T A046020 4211,4783,5387,5507,5531,6563,6659,6703,7043,9587,9931,10867,10883, %U A046020 12203,12739,13099,13187,15307,15451,16267,17203,17851,18379,20323 %N A046020 Discriminants of imaginary quadratic fields with class number 23 (negated). %H A046020 Giovanni Resta, <a href="/A046020/b046020.txt">Table of n, a(n) for n = 1..68</a> (full sequence, from Steven Arno et al.) %H A046020 Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330. %H A046020 Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796. %H A046020 Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a> %H A046020 C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996. %H A046020 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number.</a> %H A046020 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %t A046020 Reap[ Do[ If[ NumberFieldClassNumber[ Sqrt[-n] ] == 23, d = -NumberFieldDiscriminant[ Sqrt[-n] ]; Print[d]; Sow[d]], {n, 1, 21000}]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 22 2012 *) %o A046020 (PARI) select(n->qfbclassno(-n)==23, vector(22696, n, 4*n+3)) \\ _Charles R Greathouse IV_, Apr 25 2013 %Y A046020 Cf. A006203, A013658, A014602, A014603, A046002-A046020. %K A046020 nonn,fini,full %O A046020 1,1 %A A046020 _Eric W. Weisstein_ %E A046020 68 discriminants in this sequence (proved).