This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046051 #67 Feb 16 2025 08:32:38 %S A046051 0,1,1,2,1,3,1,3,2,3,2,5,1,3,3,4,1,6,1,6,4,4,2,7,3,3,3,6,3,7,1,5,4,3, %T A046051 4,10,2,3,4,8,2,8,3,7,6,4,3,10,2,7,5,7,3,9,6,8,4,6,2,13,1,3,7,7,3,9,2, %U A046051 7,4,9,3,14,3,5,7,7,4,8,3,10,6,5,2,14,3,5,6,10,1,13,5,9,3,6,5,13,2,5,8 %N A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity). %C A046051 Length of row n of A001265. %H A046051 Sean A. Irvine, <a href="/A046051/b046051.txt">Table of n, a(n) for n = 1..1206</a> (terms 1..500 from T. D. Noe) %H A046051 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002. %H A046051 Alex Kontorovich, Jeff Lagarias, <a href="https://arxiv.org/abs/1808.03235">On Toric Orbits in the Affine Sieve</a>, arXiv:1808.03235 [math.NT], 2018. %H A046051 R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. %H A046051 S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a> %H A046051 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MersenneNumber.html">Mersenne Number</a> %F A046051 Mobius transform of A085021. - _T. D. Noe_, Jun 19 2003 %F A046051 a(n) = A001222(A000225(n)). - _Michel Marcus_, Jun 06 2019 %e A046051 a(4) = 2 because 2^4 - 1 = 15 = 3*5. %e A046051 From _Gus Wiseman_, Jul 04 2019: (Start) %e A046051 The sequence of Mersenne numbers together with their prime indices begins: %e A046051 1: {} %e A046051 3: {2} %e A046051 7: {4} %e A046051 15: {2,3} %e A046051 31: {11} %e A046051 63: {2,2,4} %e A046051 127: {31} %e A046051 255: {2,3,7} %e A046051 511: {4,21} %e A046051 1023: {2,5,11} %e A046051 2047: {9,24} %e A046051 4095: {2,2,3,4,6} %e A046051 8191: {1028} %e A046051 16383: {2,14,31} %e A046051 32767: {4,11,36} %e A046051 65535: {2,3,7,55} %e A046051 131071: {12251} %e A046051 262143: {2,2,2,4,8,21} %e A046051 524287: {43390} %e A046051 1048575: {2,3,3,5,11,13} %e A046051 (End) %t A046051 a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]] %t A046051 a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 22 2011 *) %o A046051 (PARI) a(n)=bigomega(2^n-1) \\ _Charles R Greathouse IV_, Apr 01 2013 %Y A046051 bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2). %Y A046051 Cf. A000043, A000668, A001348, A054988, A054989, A054990, A054991, A054992, A085021. %Y A046051 Cf. A000225, A001221, A001222, A046800, A049093, A059305, A325610, A325611, A325612, A325625. %K A046051 nonn %O A046051 1,4 %A A046051 _Eric W. Weisstein_