This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046058 #34 Aug 17 2025 17:43:16 %S A046058 1,2,5,14,15,51,52,267,2328,56092,10494213,49487367289 %N A046058 Incrementally largest numbers of nonisomorphic finite groups of order n. %H A046058 H. U. Besche, <a href="http://www.math.rwth-aachen.de/~Hans-Ulrich.Besche/small.html">The Small Groups library</a> %H A046058 Hans Ulrich Besche and Bettina Eick, <a href="http://dx.doi.org/10.1006/jsco.1998.0258">Construction of finite groups</a>, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 387-404. %H A046058 Hans Ulrich Besche and Bettina Eick, <a href="http://dx.doi.org/10.1006/jsco.1998.0259">The groups of order at most 1000 except 512 and 768</a>, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 405-413. %H A046058 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://www.ams.org/era/2001-07-01/S1079-6762-01-00087-7/home.html">The groups of order at most 2000</a>, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1-4. %H A046058 David Burrell, <a href="https://doi.org/10.1080/00927872.2021.2006680">On the number of groups of order 1024</a>, Communications in Algebra, 2021, 1-3. %H A046058 Bettina Eick and E. A. O'Brien, <a href="http://www.math.auckland.ac.nz/~obrien/research/count-pgroups.pdf">Enumerating p-groups</a>. Group theory. J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191-205. %H A046058 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FiniteGroup.html">Finite Group.</a> %H A046058 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A046058 a(n) = A000001(A046059(n)). - _M. F. Hasler_, Feb 24 2015 %Y A046058 Cf. A000001, A000679, A000688, A046057, A046059. %K A046058 nonn,more,hard,nice %O A046058 1,2 %A A046058 _Eric W. Weisstein_ %E A046058 a(11) and a(12) from _Eamonn O'Brien_, Apr 15 2002 %E A046058 a(12) corrected by _David Burrell_, Jun 06 2022