This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046059 #33 Feb 16 2025 08:32:38 %S A046059 1,4,8,16,24,32,48,64,128,256,512,1024,2048 %N A046059 Orders of finite groups having the incrementally largest numbers of nonisomorphic forms A046058. %H A046059 H. U. Besche, <a href="http://www.math.rwth-aachen.de/~Hans-Ulrich.Besche/small.html">The Small Groups library</a> %H A046059 H. U. Besche and Bettina Eick, <a href="http://dx.doi.org/10.1006/jsco.1998.0258">Construction of finite groups</a>, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 387-404. %H A046059 H. U. Besche and Bettina Eick, <a href="http://dx.doi.org/10.1006/jsco.1998.0259">The groups of order at most 1000 except 512 and 768</a>, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 405-413. %H A046059 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://www.ams.org/era/2001-07-01/S1079-6762-01-00087-7/home.html">The groups of order at most 2000</a>, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1-4. %H A046059 J. H. Conway, Heiko Dietrich and E. A. O'Brien, <a href="http://www.math.auckland.ac.nz/~obrien/research/gnu.pdf">Counting groups: gnus, moas and other exotica</a>, The Mathematical Intelligencer, March 2008, Volume 30, Issue 2, pp 6-15. %H A046059 Bettina Eick, and E. A. O'Brien, <a href="https://doi.org/10.1017/S1446788700001166">Enumerating p-groups. Group theory</a>, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191-205. %H A046059 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FiniteGroup.html">Finite Group.</a> %H A046059 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %Y A046059 Cf. A046056, A046058. %K A046059 nonn,more,hard %O A046059 1,2 %A A046059 _Eric W. Weisstein_ %E A046059 a(11)-a(12) from _Eamonn O'Brien_, Apr 15 2002 %E A046059 a(13) added by _Eric M. Schmidt_, Aug 02 2012