This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046060 #39 Jul 18 2025 11:07:52 %S A046060 14182439040,31998395520,518666803200,13661860101120,30823866178560, %T A046060 740344994887680,796928461056000,212517062615531520, %U A046060 69357059049509038080,87934476737668055040,170206605192656148480,1161492388333469337600,1245087725796543283200,1802582780370364661760 %N A046060 5-multiperfect numbers. %C A046060 Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. [_Georgi Guninski_, Jul 25 2012] %D A046060 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143. %H A046060 T. D. Noe, <a href="/A046060/b046060.txt">Table of n, a(n) for n = 1..65</a> (complete sequence from Flammenkamp) %H A046060 Farideh Firoozbakht and Maximilian F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1. %H A046060 Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a>. %H A046060 Shyam Sunder Gupta, <a href="https://doi.org/10.1007/978-981-97-2465-9_6">Perfect, Multiply Perfect, and Sociable Numbers</a>, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207. %H A046060 Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a>. %H A046060 Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>. %H A046060 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiperfectNumber.html">Multiperfect Number</a>. %e A046060 From _Daniel Forgues_, May 09 2010: (Start) %e A046060 14182439040 = 2^7*3^4*5*7*11^2*17*19 %e A046060 sigma(14182439040) %e A046060 = (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18 %e A046060 = (255)*(121)*(6)*(8)*(133)*(18)*(20) %e A046060 = (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5) %e A046060 = 2^7*3^4*5^2*7*11^2*17*19 %e A046060 = (5) * (2^7*3^4*5*7*11^2*17*19) %e A046060 = 5 * 14182439040 (End) %o A046060 (PARI) is(n)=sigma(n)==5*n \\ _Charles R Greathouse IV_, Apr 05 2013 %Y A046060 Cf. A000396, A005820, A027687, A046061, A007539. %K A046060 nonn %O A046060 1,1 %A A046060 _Eric W. Weisstein_