This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046097 #41 Jul 02 2025 16:01:56 %S A046097 1,2,3,4,6,9,10,12,36 %N A046097 Values of n for which binomial(2n-1, n) is squarefree. %C A046097 No more terms up to 2^300. The sequence is finite by results of Sander and of Granville and Ramaré (see links). - _Robert Israel_, Dec 10 2015 %H A046097 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinomialCoefficient.html">Binomial Coefficient.</a> %H A046097 A. Granville and O. Ramaré, <a href="http://dx.doi.org/10.1112/S0025579300011608">Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients</a>, Mathematika 43 (1996), 73-107. %H A046097 J. W. Sander, <a href="https://eudml.org/doc/153440">Prime power divisors of binomial coefficients</a>, Journal für die reine und angewandte Mathematik 430 (1992), 1-20. %p A046097 select(n -> numtheory:-issqrfree(binomial(2*n-1,n)), [$1..2000]); # _Robert Israel_, Dec 09 2015 %p A046097 N:= 300: # to find all terms <= 2^N %p A046097 carries:= proc(n,m,p) %p A046097 # number of carries when adding n + m in base p. %p A046097 local A,B,C,j,nc, t; %p A046097 A:= convert(m,base,p); %p A046097 B:= convert(n,base,p); %p A046097 C:= 0; nc:= 0; %p A046097 if nops(A) < nops(B) then A = [op(A),0$(nops(B)-nops(A))] %p A046097 elif nops(A) > nops(B) then B:= [op(B), 0$(nops(A)-nops(B))] %p A046097 fi; %p A046097 for j from 1 to nops(A) do %p A046097 t:= C + A[j] + B[j]; %p A046097 if t >= p then %p A046097 nc:= nc+1; %p A046097 C:= 1; %p A046097 else %p A046097 C:= 0 %p A046097 fi %p A046097 od: %p A046097 nc; %p A046097 end proc: %p A046097 Cands:= {seq(2^j,j=0..N), seq(seq(2^j + 2^k, k=0..j-1),j=1..N-1)}: %p A046097 for i from 2 to 10 do %p A046097 Cands:= select(n -> carries(n-1,n,ithprime(i)) <= 1, Cands) %p A046097 od: %p A046097 select(n -> numtheory:-issqrfree(binomial(2*n-1,n)),Cands); # _Robert Israel_, Dec 10 2015 %t A046097 Select[ Range[1500], SquareFreeQ[ Binomial[ 2#-1, #]] &] (* _Jean-François Alcover_, Oct 25 2012 *) %o A046097 (PARI) is(n)=issquarefree(binomial(2*n-1,n)) \\ _Anders Hellström_, Dec 09 2015 %o A046097 (Magma) [n: n in [1..150] | IsSquarefree(Binomial(2*n-1,n))]; // _Vincenzo Librandi_, Dec 10 2015 %Y A046097 Cf. A001700. %Y A046097 For a term to be here, it needs to be at least in the intersection of A048645, A051382, A050607, A050608 and an infinitude of similar sequences. The corresponding location in next-to-center column should be nonzero in A034931 (Pascal's triangle mod 4) and all similarly constructed fractal triangles (Pascal's triangle mod p^2). %K A046097 nonn,fini %O A046097 1,2 %A A046097 _Eric W. Weisstein_ %E A046097 _James Sellers_ reports no further terms below 1500. %E A046097 _Michael Somos_ checked to 99999. Probably there are no more terms. %E A046097 _Mauro Fiorentini_ checked up to 2^64, as for n = 545259520, the binomial coefficient is a multiple of 5^4 and other possible exceptions have been checked (see Weisstein page for details).