This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046150 #15 Feb 16 2025 08:32:38 %S A046150 9,77,976,8876,98886,997762,9999996,99988862,999888621,9998888773, %T A046150 99988887731,999888877311,9998888773111,99988887731111, %U A046150 998888887777772,9988888877777721,99999999998777772,999999999987777721,9999999999877777211,99999999998777772111 %N A046150 Largest n-digit number with maximal multiplicative persistence A014553. %C A046150 Since there exists no number < 10^233 with multiplicative persistence 12, a(n) = 99999999998777772 * 10^(n-17) + (10^(n-17)-1)/9 for 17 <= n < 233. - _Sean A. Irvine_, Apr 05 2021 %H A046150 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a046/A046150.java">Java program</a> (github) %H A046150 N. J. A. Sloane, <a href="http://neilsloane.com/doc/persistence.html">The persistence of a number</a>, J. Recreational Math., 6 (1973), 97-98. %H A046150 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence.</a> %Y A046150 Cf. A014553, A046148, A046149. %K A046150 nonn,base %O A046150 1,1 %A A046150 _Eric W. Weisstein_ %E A046150 a(8)-a(18) from _Donovan Johnson_, Mar 30 2010 %E A046150 a(19)-a(20) from _Sean A. Irvine_, Apr 05 2021