This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046165 #58 Feb 16 2025 08:32:39 %S A046165 1,1,2,8,49,462,6424,129425,3731508,152424420,8780782707,710389021036, %T A046165 80610570275140,12815915627480695,2855758994821922882, %U A046165 892194474524889501292,391202163933291014701953,240943718535427829240708786,208683398342300491409959279244 %N A046165 Number of minimal covers of n objects. %C A046165 No edge of a minimal cover can be a subset of any other, so minimal covers are antichains, but the converse is not true. - _Gus Wiseman_, Jul 03 2019 %C A046165 a(n) is the number of undirected graphs on n nodes for which the intersection number and independence number are equal. See Proposition 2.3.7 and Theorem 2.3.3 of the Deligeorgaki et al. paper below. - _Alex Markham_, Oct 13 2022 %H A046165 Alois P. Heinz, <a href="/A046165/b046165.txt">Table of n, a(n) for n = 0..113</a> %H A046165 Damian Bursztyn, François Goasdoué, and Ioana Manolescu, <a href="https://team.inria.fr/oak/files/2014/10/techReport-28112014.pdf">Optimizing Reformulation-based Query Answering in RDF</a>, [Research Report] RR-8646, INRIA Saclay. 2014. <hal-01091214> %H A046165 D. Deligeorgaki, A. Markham, P. Misra, and L. Solus, <a href="https://arxiv.org/abs/2210.00822">Combinatorial and algebraic perspectives on the marginal independence structure of Bayesian networks</a>, arXiv:2210.00822 [stat.ME], 2022. %H A046165 Giovanni Resta, <a href="/A046165/a046165.png">Illustration of a(4)=49.</a> %H A046165 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalCover.html">Minimal Cover</a> %F A046165 E.g.f.: Sum_{n>=0} (exp(x)-1)^n*exp(x*(2^n-n-1))/n!. - _Vladeta Jovovic_, May 08 2004 %F A046165 a(n) = Sum_{k=1..n} Sum_{i=k..n} C(n,i)*Stirling2(i,k)*(2^k - k - 1)^(n - i). - _Geoffrey Critzer_, Jun 27 2013 %F A046165 a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - _Vaclav Kotesovec_, Mar 10 2014 %e A046165 From _Gus Wiseman_, Jul 02 2019: (Start) %e A046165 The a(1) = 1 through a(3) = 8 minimal covers: %e A046165 {{1}} {{1,2}} {{1,2,3}} %e A046165 {{1},{2}} {{1},{2,3}} %e A046165 {{2},{1,3}} %e A046165 {{3},{1,2}} %e A046165 {{1,2},{1,3}} %e A046165 {{1,2},{2,3}} %e A046165 {{1},{2},{3}} %e A046165 {{1,3},{2,3}} %e A046165 (End) %p A046165 a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n): %p A046165 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 19 2008 %t A046165 Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* _Geoffrey Critzer_, Jun 27 2013 *) %Y A046165 Cf. A035348, A000371, A003465. %Y A046165 Antichain covers are A006126. %Y A046165 Minimal covering simple graphs are A053530. %Y A046165 Maximal antichains are A326358. %Y A046165 Row sums of A035347 or of A282575. %Y A046165 Cf. A000372, A003182, A006602, A261005, A305844, A307249, A326359. %K A046165 nonn %O A046165 0,3 %A A046165 _Eric W. Weisstein_ %E A046165 a(0)=1 prepended by _Alois P. Heinz_, Feb 18 2017