cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290).

This page as a plain text file.
%I A046172 #76 Feb 16 2025 08:32:39
%S A046172 1,81,7921,776161,76055841,7452696241,730288175761,71560788528321,
%T A046172 7012226987599681,687126683996240401,67331402804643959601,
%U A046172 6597790348171111800481,646516122717964312487521,63351982236012331511976561,6207847743006490523861215441
%N A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290).
%C A046172 if P_x = y^2 is a pentagonal number that is also a square, the least both pentagonal and square number that is greater as P_x, is P_(49*x + 40*y - 8) = (60*x + 49*y - 10)^2 (in fact, P_(49*x + 40*y - 8) - (60*x + 49*y - 10)^2 = (3/2)*x^2 - (1/2)*x - y^2). - _Richard Choulet_, Apr 28 2009
%C A046172 a(n)*(3*a(n)-1)/2 = m^2 is equivalent to the Pell equation (6*a(n)-1)^2 - 6*(2*m)^2 = 1 or x(n)^2 - 6*y(n)^2 = 1. - _Paul Weisenhorn_, May 15 2009
%C A046172 As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20*sqrt(6). - _Ant King_, Nov 07 2011
%C A046172 Numbers k such that the k-th pentagonal number is equal to the sum of two consecutive triangular numbers. - _Colin Barker_, Dec 11 2014
%C A046172 Indices of pentagonal numbers (A000326) that are also centered octagonal numbers (A016754). - _Colin Barker_, Jan 11 2015
%D A046172 Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7; http://dx.doi.org/10.1080/0020739X.2016.1164346
%H A046172 Colin Barker, <a href="/A046172/b046172.txt">Table of n, a(n) for n = 1..503</a>
%H A046172 Leonhard Euler, <a href="https://scholarlycommons.pacific.edu/euler-works/29/">De solutione problematum diophanteorum per numeros integros</a>, section 21.
%H A046172 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2018volume18/FG201808index.html">Integer Sequences and Circle Chains Inside a Circular Segment</a>, Forum Geometricorum, Vol. 18 (2018), 47-55.
%H A046172 W. Sierpiński, <a href="http://popups.ulg.ac.be/0037-9565/index.php?id=3612">Sur les nombres pentagonaux</a>, Bull. Soc. Roy. Sci. Liege 33 (1964) 513-517.
%H A046172 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalSquareNumber.html">Pentagonal Square Number</a>.
%H A046172 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).
%F A046172 a(n) = 98*a(n-1) - a(n-2) - 16; g.f.: x*(1 - 18*x + x^2)/((1-x)*(1 - 98*x + x^2)). - _Warut Roonguthai_ Jan 05 2001 - Corrected by _Colin Barker_, Jan 11 2015
%F A046172 a(n+1) = 49*a(n) - 8 + 10*sqrt(8*(3*a(n)^2 - a(n))) with a(1) = 1. - _Richard Choulet_, Apr 28 2009
%F A046172 a(n) = 1/6+((5 + 2*sqrt(6))^(2*n+1)/12) + ((5 - 2*sqrt(6))^(2*n+1)/12) for n >= 0. - _Richard Choulet_, Apr 29 2009
%F A046172 From _Paul Weisenhorn_, May 15 2009: (Start)
%F A046172 x(n+2) = 98*x(n+1) - x(n) with x(1)=5, x(2)=485;
%F A046172 y(n+2) = 98*y(n+1) - y(n) with y(n)=A046173(n)*2;
%F A046172 m(n+2) = 98*m(n+1) - m(n) with m(n)=A046173(n);
%F A046172 a(n) = A072256(n)^2.
%F A046172 (End)
%F A046172 a(n) = b(n)*b(n), b(n) = 10*b(n-1)- b(n-2), b(1)=1, b(2)=9, b(n)=((5 + sqrt(24))^n - (5 - sqrt(24))^n)/(2*sqrt(24)). - _Sture Sjöstedt_, Sep 21 2009
%F A046172 From _Ant King_, Nov 07 2011: (Start)
%F A046172 a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).
%F A046172 a(n) = ceiling((1/12)*(sqrt(3) + sqrt(2))^(4*n-2)).
%F A046172 (End)
%F A046172 a(n) = (1 + x^(2n+1))^2 / (12*x^(2*n+1)), with x = 5 + 2*sqrt(6). - _Federico Provvedi_, Apr 24 2023
%t A046172 LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* _Ant King_, Nov 07 2011 *)
%t A046172 Table[Round[(1 + x^(2*n+1))^2 / (12*x^(2*n+1)) /. x->5+2*Sqrt@6],{n,0,99}] (* _Federico Provvedi_, Apr 24 2023 *)
%Y A046172 Cf. A036353, A046173.
%Y A046172 Cf. A000217, A000290, A000326, A251914, A248205.
%K A046172 nonn,easy
%O A046172 1,2
%A A046172 _Eric W. Weisstein_