This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046177 #50 Feb 16 2025 08:32:39 %S A046177 1,1225,1413721,1631432881,1882672131025,2172602007770041, %T A046177 2507180834294496361,2893284510173841030625,3338847817559778254844961, %U A046177 3853027488179473932250054441,4446390382511295358038307980025,5131130648390546663702275158894481 %N A046177 Squares (A000290) which are also hexagonal numbers (A000384). %C A046177 Also, odd square-triangular numbers (or bisection of A001110 = {0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, ...} = Numbers that are both triangular and square: a(n) = 34a(n-1) - a(n-2) + 2). - _Alexander Adamchuk_, Nov 06 2007 %C A046177 Let y^2 = x*(2*x-1) = H_x (x>=1). The least both hexagonal and square number which is greater than y^2 is given by the relation (24*x+17*y-6)^2 = H_{17*x+12*y-4}. - _Richard Choulet_, May 01 2009 %C A046177 As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = ( 1+ sqrt(2))^8 = 577 + 408 * sqrt(2). - _Ant King_ Nov 08 2011 %C A046177 Also centered octagonal numbers (A016754) which are also triangular numbers (A000217). - _Colin Barker_, Jan 16 2015 %C A046177 Also hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - _Colin Barker_, Jan 25 2015 %D A046177 M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80. %H A046177 Colin Barker, <a href="/A046177/b046177.txt">Table of n, a(n) for n = 1..327</a> %H A046177 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HexagonalSquareNumber.html">Hexagonal Square Number.</a> %H A046177 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareTriangularNumber.html">Square Triangular Number</a>. %H A046177 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1155,-1155,1). %F A046177 a(n) = A001110(2n-1). - _Alexander Adamchuk_, Nov 06 2007 %F A046177 a(n+1) = 577*a(n)+36+204*(8*a(n)^2+a(n))^0.5 for n>=1 (a(0)=1). - _Richard Choulet_, May 01 2009 %F A046177 a(n+2) = 1154*a(n+1) - a(n) + 72 for n>=0. - _Richard Choulet_, May 01 2009 %F A046177 From _Ant King_, Nov 07 2011: (Start) %F A046177 a(n) = 1155*a(n-1) - 1155*a(n-2) + a(n-3). %F A046177 a(n) = 1/32*((1 + sqrt(2))^(8*n - 4) + (1 - sqrt(2))^(8*n-4) - 2). %F A046177 a(n) = floor(1/32*(1 + sqrt(2))^(8*n - 4)). %F A046177 a(n) = 1/32*((tan(3*Pi/8))^(8*n-4) + (tan(Pi/8))^(8*n-4) - 2). %F A046177 a(n) = floor(1/32*(tan(3*Pi/8))^(8*n-4)). %F A046177 G.f.: x*(1 + 70*x + x^2)/((1 - x)*(1 - 1154*x + x^2)). %F A046177 (End) %F A046177 a(n) = A096979(4*n - 3). - _Ivan N. Ianakiev_, Sep 05 2016 %F A046177 a(n) = (1/2) * (A002315(n))^2 * ((A002315(n))^2 + 1) = ((2*x + 1)*sqrt(x^2 + (x+1)^2))^2, where x = (1/2)*(A002315(n)-1). - _Ivan N. Ianakiev_, Sep 05 2016 %t A046177 LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* _Ant King_, Nov 08 2011 *) %o A046177 (PARI) Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ _Colin Barker_, Jan 16 2015 %Y A046177 Cf. A008844, A046176, A253826. %Y A046177 Cf. A001110 (Numbers that are both triangular and square). %Y A046177 Cf. A000290, A000384, A016754, A253826. %K A046177 nonn,easy %O A046177 1,2 %A A046177 _Eric W. Weisstein_