cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046193 Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).

This page as a plain text file.
%I A046193 #38 Feb 16 2025 08:32:39
%S A046193 1,5,221,1513,71065,487085,22882613,156839761,7368130225,50501915861,
%T A046193 2372515049741,16261460067385,763942477886281,5236139639782013,
%U A046193 245987105364332645,1686020702549740705,79207083984837225313,542893430081376724901,25504435056012222218045
%N A046193 Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).
%C A046193 From _Ant King_, Oct 19 2011: (Start)
%C A046193 lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(47+21*sqrt(5)).
%C A046193 lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(7+3*sqrt(5)).
%C A046193 (End)
%C A046193 From _Raphie Frank_, Nov 30 2012: (Start)
%C A046193 Where L_n is a Lucas number and F_n is Fibonacci number:
%C A046193 lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(L_8 + F_8*sqrt(5)),
%C A046193 lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(L_4 + F_4*sqrt(5)),
%C A046193 a(n) = L_1*a(n-1) + L_12*a(n-2) - L_12*a(n-3)- L_1*a(n-4) + L_1*a(n-5).
%C A046193 (End)
%C A046193 Values of n such that 2*n-1 and 10*n-1 are both perfect squares. - _Colin Barker_, Dec 03 2016
%H A046193 Colin Barker, <a href="/A046193/b046193.txt">Table of n, a(n) for n = 1..798</a>
%H A046193 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalTriangularNumber.html">Heptagonal Triangular Number.</a>
%H A046193 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,322,-322,-1,1).
%F A046193 For n odd, a(n+2) = 322*a(n+1) - a(n) - 96; for n even, a(n+1) = 161*a(n) - 48 + 36*sqrt(20*a(n)^2 - 12*a(n)+1). - _Richard Choulet_, Sep 29 2007, Oct 09 2007
%F A046193 From _Ant King_, Oct 19 2011: (Start)
%F A046193 a(n) = 322*a(n-2) - a(n-4) - 96.
%F A046193 a(n) = a(n-1) + 322*a(n-2) - 322*a(n-3) - a(n-4) + a(n-5).
%F A046193 a(n) = (1/20)*((sqrt(5)-(-1)^n)*(sqrt(5)+2)^(2n-1) + (sqrt(5)+(-1)^n)*(sqrt(5)-2)^(2n-1)+6).
%F A046193 a(n) = ceiling((1/20)*(sqrt(5)-(-1)^n)*(2+sqrt(5))^(2n-1)).
%F A046193 G.f.: x*(1 + 4*x - 106*x^2 + 4*x^3 + x^4)/((1-x)*(1-18*x+x^2)*(1+18*x+x^2)).
%F A046193 (End)
%t A046193 LinearRecurrence[{1,322,-322,-1,1},{1,5,221,1513,71065},17] (* _Ant King_, Oct 19 2011 *)
%t A046193 Select[Range@240000000, IntegerQ@Sqrt[2 # - 1] && IntegerQ@Sqrt[10 # - 1] &] (* _Vincenzo Librandi_, Dec 04 2016 *)
%o A046193 (PARI) Vec(-x*(x^4+4*x^3-106*x^2+4*x+1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^50)) \\ _Colin Barker_, Jun 23 2015
%o A046193 (Magma) [n: n in [1..2*10^8] |IsSquare(2*n-1) and IsSquare(10*n-1)]; // _Vincenzo Librandi_, Dec 04 2016
%Y A046193 Cf. A039835, A046194.
%K A046193 nonn,easy
%O A046193 1,2
%A A046193 _Eric W. Weisstein_