cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046195 Indices of heptagonal numbers (A000566) which are also squares (A000290).

This page as a plain text file.
%I A046195 #44 Feb 16 2025 08:32:39
%S A046195 1,6,49,961,8214,70225,1385329,11844150,101263969,1997643025,
%T A046195 17079255654,146022572641,2880599856289,24628274808486,
%U A046195 210564448483921,4153822995125281,35513955194580726,303633788691241009,5989809878370798481,51211098762310597974
%N A046195 Indices of heptagonal numbers (A000566) which are also squares (A000290).
%C A046195 (10 * a(n) - 3)^2 - 40 * (A046196(n))^2 = 9. - _Ant King_, Nov 12 2011
%C A046195 Also numbers n such that the n-th heptagonal number is equal to the sum of two consecutive triangular numbers. - _Colin Barker_, Dec 11 2014
%C A046195 Also indices of heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - _Colin Barker_, Jan 19 2015
%C A046195 Also nonnegative integers y in the solutions to 2*x^2-5*y^2+4*x+3*y+2+2 = 0, the corresponding values of x being A251927. - _Colin Barker_, Dec 11 2014
%H A046195 Colin Barker, <a href="/A046195/b046195.txt">Table of n, a(n) for n = 1..950</a>
%H A046195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalSquareNumber.html">Heptagonal Square Number.</a>
%H A046195 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1442,-1442,0,-1,1).
%F A046195 From _Paul Weisenhorn_, May 01 2009: (Start)
%F A046195 Pell equations: r^2-10*s^2=1 with solution (19,6)
%F A046195 (10*n-3)^2-10*(2*m)^2=9; basic solutions: (7,-2); (7,+2)((57,18);
%F A046195 with x=10*n-3; y=2*m; A=(19+6*sqrt(10))^2; B=(19-6*sqrt(10))^2 one get
%F A046195 x(3*k)+sqrt(10)*y(3*k)=(7-2*sqrt(10))*A^k;
%F A046195 x(3*k+1)+sqrt(10)*y(3*k+1)=(7+2*sqrt(10))*A^k;
%F A046195 x(3*k+2)+sqrt(10)*y(3*k+2)=(57+18*sqrt(10))*A^k;
%F A046195 with the eigenvalues A=721+228*sqrt(10); B=721-228*sqrt(10)
%F A046195 one get the recurrences with 1442=4*19*19-2
%F A046195 x(k+6)=1442*x(k+3)-x(k); y(k+6)=1442*y(k+3)-y(k);
%F A046195 m(k+6)=1442*m(k+3)-m(k); n(k+6)=1442*n(k+3)-n(k)-432;
%F A046195 and the explicit formulas
%F A046195 x(3*k+1)=(7*(A^k+B^k)+2*sqrt(10)*(A^k-B^k))/2;
%F A046195 x(3*k+2)=(57*(A^k+B^k)+18*sqrt(10)*(A^k-B^k))/2;
%F A046195 x(3*k)=(7*(A^k+B^k)-2*sqrt(10)*(A^k-B^k))/2;
%F A046195 y(3*k+1)=(7*(A^k-B^k)/sqrt(10)+2*(A^k+B^k)/2;
%F A046195 y(3*k+2)=(57*(A^k-B^k)/sqrt(10)+18*(A^k+B^k))/2;
%F A046195 y(3*k)=(7*(A^k-B^k)/sqrt(10)-2*(A^k+B^k))/2;
%F A046195 n(k)=(x(k)+3)/10; m(k)=y(k)/2;
%F A046195 (End)
%F A046195 a(n) = +a(n-1) +1442*a(n-3) -1442*a(n-4) -a(n-6) +a(n-7). G.f.: -x*(1+5*x+43*x^2-530*x^3+43*x^4+5*x^5+x^6) / ( (x-1)*(x^6-1442*x^3+1) ). - _R. J. Mathar_, Aug 01 2010
%F A046195 a(n) = 1442*a(n-3) - a(n-6) - 432. - _Ant King_, Nov 12 2011
%p A046195 for n from 1 to 10000 do m:=sqrt((5*n^2-3*n)/2):
%p A046195 if (trunc(m)=m) then print(n,m): end if: end do: # _Paul Weisenhorn_, May 01 2009
%t A046195 LinearRecurrence[{1 ,0, 1442, -1442, 0, -1, 1}, {1, 6, 49, 961, 8214, 70225, 1385329}, 17] (* _Ant King_, Nov 12 2011 *)
%Y A046195 Cf. A000566, A036254, A046196, A251927, A253920.
%K A046195 nonn,easy
%O A046195 1,2
%A A046195 _Eric W. Weisstein_
%E A046195 More terms from _Colin Barker_, Dec 11 2014