A046209 Number of ternary Lyndon words whose digits sum to 0 mod 3; also number of trace 0 irreducible polynomials over GF(3).
1, 1, 2, 6, 16, 38, 104, 270, 726, 1960, 5368, 14736, 40880, 113828, 318848, 896670, 2532160, 7174050, 20390552, 58112088, 166037248, 475467916, 1364393896, 3922624800, 11297181456, 32588003000, 94143178098, 272342710380, 788854912240, 2287679084096, 6641649422408, 19302293185470
Offset: 1
Keywords
Examples
a(4) = 6 = |{ 0012, 0021, 0111, 0102, 0222, 1122 }|.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2000
- F. Ruskey, Number of q-ary Lyndon words with given trace mod q
- F. Ruskey, Number of monic irreducible polynomials over GF(q) with given trace
- F. Ruskey, Number of Lyndon words over GF(q) with given trace
- Index entries for sequences related to Lyndon words
Crossrefs
Cf. A046211.
Programs
-
Mathematica
a[n_] := 1/(3n) DivisorSum[n, GCD[#, 3]*MoebiusMu[#]*3^(n/#)&]; Array[a, 32] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
PARI
a(n) = 1/(3*n) * sumdiv(n, d, gcd(d, 3)*moebius(d)*3^(n/d) ); /* Joerg Arndt, Aug 17 2012 */
Formula
a(n) = 1/(3*n) * sum(d divides n, gcd(d, 3)*mu(d)*3^(n/d) ).
Comments