cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046211 Number of ternary Lyndon words whose digits sum to 1 (or 2) mod 3; number of trace 1 (or 2) monic irreducible polynomials over GF(3).

Original entry on oeis.org

1, 1, 3, 6, 16, 39, 104, 270, 729, 1960, 5368, 14742, 40880, 113828, 318864, 896670, 2532160, 7174089, 20390552, 58112088, 166037352, 475467916, 1364393896, 3922625070, 11297181456, 32588003000, 94143178827, 272342710380, 788854912240, 2287679086056, 6641649422408, 19302293185470
Offset: 1

Views

Author

Frank Ruskey, Dec 13 1999

Keywords

Comments

Also number of ternary Lyndon words of trace 1 over GF(3).
Also number of ternary Lyndon words of trace 2 over GF(3).

Examples

			a(4)= 6 = |{ 0001, 0022, 0112, 0121, 0211, 1222 }|.
		

Crossrefs

Cf. A008683 (mu), A046209.

Programs

  • Mathematica
    a[n_] := 1/(3n) DivisorSum[n, If[GCD[#, 3] == 1, MoebiusMu[#]*3^(n/#), 0] &]; Array[a, 32] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    a(n) = 1/(3*n) * sumdiv(n, d, if(gcd(d, 3)==1, moebius(d)*3^(n/d), 0 ) ); /* Joerg Arndt, Aug 17 2012 */

Formula

a(n) = 1/(3*n) * Sum_{d divides n, gcd(d, 3)=1} mu(d) * 3^{n/d}.
a(n) ~ 3^(n-1) / n. - Vaclav Kotesovec, Apr 18 2016