This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046213 #23 Mar 31 2017 22:35:47 %S A046213 1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,2,3,2,1,1,1,1,5,2,3,1,5,2,1,1,1,1,7,2, %T A046213 11,2,11,2,7,2,1,1,1,1,9,2,9,1,11,1,9,1,9,2,1,1,1,1,11,2,27,2,20,1,20, %U A046213 1,27,2,11,2,1,1,1,1,13,2,19,1,67,2,40,1,67,2,19,1,13,2,1,1,1,1,15,2 %N A046213 First numerator and then denominator of 1/2-Pascal triangle (by row). To get a 1/2-Pascal triangle, replace "2" in third row of Pascal triangle with "1/2" and calculate all other rows as in Pascal triangle. %H A046213 Peter J. C. Moses, <a href="/A046213/b046213.txt">Table of n, a(n) for n = 1..10000</a> %e A046213 1/1; %e A046213 1/1 1/1; %e A046213 1/1 1/2 1/1; %e A046213 1/1 3/2 3/2 1/1; %e A046213 1/1 5/2 3/1 5/2 1/1; %e A046213 1/1 7/2 11/2 11/2 7/2 1/1; %e A046213 1/1 9/2 9/1 11/1 9/1 9/2 1/1; %e A046213 1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1; ... %t A046213 fractionalPascal[1,_] = {1}; fractionalPascal[2,_] = {1,1}; fractionalPascal[3,frac_] = {1,frac,1}; fractionalPascal[n_,frac_] := fractionalPascal[n,frac] = Join[{1}, Map[Total, Partition[fractionalPascal[n-1,frac],2,1]],{1}]; Flatten[Map[Transpose,Transpose[{Numerator[#], Denominator[#]}]&[Map[fractionalPascal[#,1/2]&, Range[15]]]]] (* _Peter J. C. Moses_, Apr 04 2013 *) %K A046213 nonn,tabf,less %O A046213 1,10 %A A046213 _Mohammad K. Azarian_