cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046224 Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.

This page as a plain text file.
%I A046224 #37 Jul 02 2025 16:01:56
%S A046224 1,2,3,11,40,147,546,2046,7722,29315,111826,428298,1646008,6344366,
%T A046224 24515700,94942620,368404110,1431985635,5574725970,21732560850,
%U A046224 84828633120,331488081210,1296712152060,5077282282020,19897457591700,78039200913102,306302623291476
%N A046224 Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
%H A046224 G. C. Greubel, <a href="/A046224/b046224.txt">Table of n, a(n) for n = 1..200</a>
%F A046224 a(n) = Sum_{k=1..n-2} (2*k+1)*binomial(2*n-k-5,n-3), n>2; a(1)=1, a(2)=2. - _Vladimir Kruchinin_, Sep 27 2011
%F A046224 a(n) = (5*n-9)/(8*n-12)*binomial(2*n-2,n-1), n>2; a(1)=1, a(2)=2. - _Eric Werley_, Sep 16 2015
%F A046224 G.f.: (3/2)*x^2 + (2*x - 3*x^2)/(2*sqrt(1-4*x)). - _G. C. Greubel_, Sep 24 2015
%e A046224 1/1; <-- hence 1;
%e A046224 1/1 1/1;
%e A046224 1/1 1/2 1/1; <-- hence 2
%e A046224 1/1 3/2 3/2 1/1;
%e A046224 1/1 5/2 3/1 5/2 1/1; <-- hence 3
%e A046224 1/1 7/2 11/2 11/2 7/2 1/1;
%e A046224 1/1 9/2 9/1 11/1 9/1 9/2 1/1; <-- hence 11
%e A046224 1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1;
%e A046224 ...
%t A046224 Join[{1, 2}, Table[(5 n - 9)/(8 n - 12) Binomial[2 n - 2, n - 1], {n, 3, 40}]] (* _Vincenzo Librandi_, Sep 24 2015 *)
%o A046224 (Magma) [1,2] cat [(5*n-9)/(8*n-12)*Binomial(2*n-2,n-1): n in [3..40]]; // _Vincenzo Librandi_, Sep 24 2015
%o A046224 (PARI) a(n) = if (n<3, n, (5*n-9)/(8*n-12)*binomial(2*n-2,n-1));
%o A046224 vector(40, n, a(n)) \\ _Altug Alkan_, Oct 01 2015
%Y A046224 Cf. A046213.
%K A046224 nonn
%O A046224 1,2
%A A046224 _Mohammad K. Azarian_
%E A046224 More terms from _James Sellers_, Dec 13 1999
%E A046224 a(26)-a(27) from _Vincenzo Librandi_, Sep 24 2015