cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046237 Numbers whose cube is palindromic in base 7.

This page as a plain text file.
%I A046237 #29 Aug 11 2024 14:36:52
%S A046237 0,1,2,4,8,16,50,100,200,344,688,1376,2402,4804,9608,16808,33616,
%T A046237 67232,117650,235300,470600,823544,1647088,3294176,5764802,11529604,
%U A046237 23059208,40353608,80707216,161414432,282475250,564950500,1129901000,1977326744,3954653488,7909306976
%N A046237 Numbers whose cube is palindromic in base 7.
%C A046237 Contains triples with base-7 digits 10^k1, 20^k2, 40^k4 for k >= 1, where ^ denotes repeated concatenation. - _Michael S. Branicky_, Aug 02 2022
%H A046237 Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg4.htm">World!Of Numbers</a>, Palindromic cubes in bases 2 to 17.
%o A046237 (PARI) isok(k) = my(d=digits(k^3, 7)); Vecrev(d) == d; \\ _Michel Marcus_, Aug 02 2022
%o A046237 (Python)
%o A046237 from itertools import count, islice
%o A046237 from sympy.ntheory import is_palindromic as ispal
%o A046237 def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 7))
%o A046237 print(list(islice(agen(), 22))) # _Michael S. Branicky_, Aug 02 2022
%Y A046237 Cf. A046238.
%K A046237 nonn,base
%O A046237 1,3
%A A046237 _Patrick De Geest_, May 15 1998
%E A046237 a(30)-a(36) from _Michael S. Branicky_, Aug 03 2022