This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046243 #29 Aug 11 2024 14:39:01 %S A046243 0,1,2,7,12,122,133,1332,14642,14763,15984,161052,162504,175704, %T A046243 1771562,1772893,1932624,19487172,19503144,19648344,21258744, %U A046243 214358882,214373523,214521264,216130564,233846064,2357947692,2358123384,2377434984,2572306584,25937424602 %N A046243 Numbers whose cube is palindromic in base 11. %C A046243 Contains all terms of A069748, interpreted as base-11 numbers, and then converted to decimal. - _Michael S. Branicky_, Aug 06 2022 %H A046243 Michael S. Branicky, <a href="/A046243/b046243.txt">Table of n, a(n) for n = 1..36</a> %H A046243 Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg4.htm">World!Of Numbers</a>, Palindromic cubes in bases 2 to 17. %t A046243 For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *) %o A046243 (PARI) isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ _Michel Marcus_, Aug 02 2022 %o A046243 (Python) %o A046243 from itertools import count, islice %o A046243 from sympy.ntheory import is_palindromic as ispal %o A046243 def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11)) %o A046243 print(list(islice(agen(), 17))) # _Michael S. Branicky_, Aug 02 2022 %Y A046243 Cf. A046244, A069748. %K A046243 nonn,base %O A046243 1,3 %A A046243 _Patrick De Geest_, May 15 1998 %E A046243 More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 %E A046243 a(29) and beyond from _Michael S. Branicky_, Aug 07 2022