cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046253 Equal to the sum of its nonzero digits raised to its own power.

This page as a plain text file.
%I A046253 #54 Sep 04 2025 18:40:53
%S A046253 0,1,3435,438579088
%N A046253 Equal to the sum of its nonzero digits raised to its own power.
%C A046253 A variant of Münchausen numbers, cf. A166623.
%C A046253 The sequence is finite, because the sum can't exceed 9^9*L < 10^9*L, where L is the number of digits, and for L > 10 this is less than the number N >= 10^(L-1). - _M. F. Hasler_, Oct 01 2024
%D A046253 J. S. Madachy, "Madachy's Mathematical Recreations", Dover N.Y., pp. 163-175.
%D A046253 C. A. Pickover, "Keys to Infinity", Wiley 1995, Ch. 22, pp. 169-171.
%D A046253 Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 37.
%D A046253 David Wells, "Curious and Interesting Numbers", Penguin 1988, pp. 169, 190.
%H A046253 Devin Akman, <a href="https://projecteuclid.org/euclid.mjms/1534384947">Munchausen Numbers Redux</a>, Missouri J. Math. Sci. 30 (2018), no. 1, 1--4.
%H A046253 Geoff Bailey, <a href="https://homepage.kranzky.com/puzzles/power_ultra.c">C program for the sequence</a> (cf. Hutchens link for more info), Aug. 1998.
%H A046253 Daan van Berkel, <a href="http://arxiv.org/abs/0911.3038">On a curious property of 3435</a>, arXiv:0911.3038 [math.HO], 2009.
%H A046253 Jason Hutchens, <a href="https://homepage.kranzky.com/puzzles/Power.html">power summation</a> (originally at ciips.ee.uwa.edu.au/~hutch), 1997.
%H A046253 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MuenchhausenNumber.html">Münchhausen Number</a>.
%e A046253 3435 = 3^3 + 4^4 + 3^3 + 5^5.
%t A046253 Select[Range[0,10000],Total[#^#&/@DeleteCases[IntegerDigits@#,0]]==#&]  (* _Giorgos Kalogeropoulos_, May 08 2019 *)
%o A046253 (C) // See Bailey and Hutchens links
%o A046253 (PARI) select( {is_A046253(n)=n==A045512(n)}, [0..10^4]) \\ To find the 4th solution, multiply the set by 51817. - _M. F. Hasler_, Oct 01 2024
%Y A046253 Cf. A032799, A166623.
%Y A046253 Fixed points of A045512. See also A045503 (includes zero digits).
%K A046253 nonn,fini,full,base,changed
%O A046253 1,3
%A A046253 _Patrick De Geest_, May 15 1998