This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046304 #29 Apr 21 2025 23:05:08 %S A046304 32,48,64,72,80,96,108,112,120,128,144,160,162,168,176,180,192,200, %T A046304 208,216,224,240,243,252,256,264,270,272,280,288,300,304,312,320,324, %U A046304 336,352,360,368,378,384,392,396,400,405,408,416,420,432,440,448,450,456 %N A046304 Divisible by at least 5 primes (counted with multiplicity). %H A046304 John Cerkan, <a href="/A046304/b046304.txt">Table of n, a(n) for n = 1..10000</a> %F A046304 Product p_i^e_i with Sum e_i >= 5. %F A046304 a(n) = n + O(n (log log n)^3/log n). - _Charles R Greathouse IV_, Apr 07 2017 %t A046304 Select[Range[500],PrimeOmega[#]>4&] (* _Harvey P. Dale_, Apr 16 2013 *) %o A046304 (PARI) is(n)=bigomega(n)>4 \\ _Charles R Greathouse IV_, Sep 17 2015 %o A046304 (Python) %o A046304 from math import prod, isqrt %o A046304 from sympy import primerange, primepi, integer_nthroot %o A046304 def A046304(n): %o A046304 def bisection(f, kmin=0, kmax=1): %o A046304 while f(kmax) > kmax: kmax <<= 1 %o A046304 kmin = kmax >> 1 %o A046304 while kmax-kmin > 1: %o A046304 kmid = kmax+kmin>>1 %o A046304 if f(kmid) <= kmid: %o A046304 kmax = kmid %o A046304 else: %o A046304 kmin = kmid %o A046304 return kmax %o A046304 def almostprimepi(n, k): %o A046304 if k==0: return int(n>=1) %o A046304 def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1))) %o A046304 return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n)) %o A046304 def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5)) %o A046304 return bisection(f,n,n) # _Chai Wah Wu_, Mar 29 2025 %Y A046304 Subsequence of A033987. %Y A046304 Cf. A014614. %K A046304 nonn %O A046304 1,1 %A A046304 _Patrick De Geest_, Jun 15 1998