This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046308 #41 Feb 16 2025 08:32:39 %S A046308 128,192,288,320,432,448,480,648,672,704,720,800,832,972,1008,1056, %T A046308 1080,1088,1120,1200,1216,1248,1458,1472,1512,1568,1584,1620,1632, %U A046308 1680,1760,1800,1824,1856,1872,1984,2000,2080,2187,2208,2268,2352,2368,2376 %N A046308 Numbers that are divisible by exactly 7 primes counting multiplicity. %C A046308 Also called 7-almost primes. Products of exactly 7 primes (not necessarily distinct). - _Jonathan Vos Post_, Dec 11 2004 %C A046308 Also, positions of 7 in A001222. - _Zak Seidov_, Oct 14 2012 %H A046308 T. D. Noe, <a href="/A046308/b046308.txt">Table of n, a(n) for n = 1..10000</a> %H A046308 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Reference</a> %F A046308 Product p_i^e_i with sum e_i = 7. %F A046308 a(n) ~ 720n log n / (log log n)^6. - _Charles R Greathouse IV_, May 06 2013 %F A046308 a(n) = A078840(7,n). - _R. J. Mathar_, Jan 30 2019 %t A046308 Select[Range[900], Plus @@ Last /@ FactorInteger[ # ] == 7 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *) %o A046308 (PARI) is(n)=bigomega(n)==7 \\ _Charles R Greathouse IV_, Mar 21 2013 %o A046308 (Python) %o A046308 from math import prod, isqrt %o A046308 from sympy import primerange, integer_nthroot, primepi %o A046308 def A046308(n): %o A046308 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A046308 def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7))) %o A046308 kmin, kmax = 1,2 %o A046308 while f(kmax) >= kmax: %o A046308 kmax <<= 1 %o A046308 while True: %o A046308 kmid = kmax+kmin>>1 %o A046308 if f(kmid) < kmid: %o A046308 kmax = kmid %o A046308 else: %o A046308 kmin = kmid %o A046308 if kmax-kmin <= 1: %o A046308 break %o A046308 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A046308 Cf. A120048 (number of 7-almost primes <= 10^n). %Y A046308 Cf. A101605, A101606, A001222. %Y A046308 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), this sequence (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011 %K A046308 nonn %O A046308 1,1 %A A046308 _Patrick De Geest_, Jun 15 1998