This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046309 #15 Aug 23 2024 22:07:43 %S A046309 256,384,512,576,640,768,864,896,960,1024,1152,1280,1296,1344,1408, %T A046309 1440,1536,1600,1664,1728,1792,1920,1944,2016,2048,2112,2160,2176, %U A046309 2240,2304,2400,2432,2496,2560,2592,2688,2816,2880,2916,2944,3024,3072,3136 %N A046309 Numbers that are divisible by at least 8 primes (counted with multiplicity). %H A046309 Harvey P. Dale, <a href="/A046309/b046309.txt">Table of n, a(n) for n = 1..1000</a> %F A046309 Product p_i^e_i with Sum e_i >= 8. %t A046309 Select[Range[3200],PrimeOmega[#]>7&] (* _Harvey P. Dale_, May 29 2013 *) %o A046309 (PARI) is(n)=bigomega(n)>7 \\ _Charles R Greathouse IV_, Sep 17 2015 %o A046309 (Python) %o A046309 from math import prod, isqrt %o A046309 from sympy import primerange, integer_nthroot, primepi %o A046309 def A046309(n): %o A046309 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A046309 def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,8))) %o A046309 kmin, kmax = 1,2 %o A046309 while f(kmax) >= kmax: %o A046309 kmax <<= 1 %o A046309 while True: %o A046309 kmid = kmax+kmin>>1 %o A046309 if f(kmid) < kmid: %o A046309 kmax = kmid %o A046309 else: %o A046309 kmin = kmid %o A046309 if kmax-kmin <= 1: %o A046309 break %o A046309 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A046309 Cf. A046310. %K A046309 nonn %O A046309 1,1 %A A046309 _Patrick De Geest_, Jun 15 1998