cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046313 Numbers that are divisible by at least 10 primes (counted with multiplicity).

This page as a plain text file.
%I A046313 #22 Aug 24 2024 01:57:44
%S A046313 1024,1536,2048,2304,2560,3072,3456,3584,3840,4096,4608,5120,5184,
%T A046313 5376,5632,5760,6144,6400,6656,6912,7168,7680,7776,8064,8192,8448,
%U A046313 8640,8704,8960,9216,9600,9728,9984,10240,10368,10752,11264,11520,11664,11776
%N A046313 Numbers that are divisible by at least 10 primes (counted with multiplicity).
%H A046313 John Cerkan, <a href="/A046313/b046313.txt">Table of n, a(n) for n = 1..10000</a>
%F A046313 Product p_i^e_i with Sum e_i >= 10.
%F A046313 a(n) = n + O(n (log log n)^8/log n). - _Charles R Greathouse IV_, Apr 07 2017
%t A046313 Select[Range[12000],PrimeOmega[#]>9&] (* _Harvey P. Dale_, Dec 17 2018 *)
%o A046313 (PARI) is(n)=bigomega(n)>9 \\ _Charles R Greathouse IV_, Sep 17 2015
%o A046313 (Python)
%o A046313 from math import isqrt, prod
%o A046313 from sympy import primerange, integer_nthroot, primepi
%o A046313 def A046313(n):
%o A046313     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o A046313     def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,10)))
%o A046313     kmin, kmax = 1,2
%o A046313     while f(kmax) >= kmax:
%o A046313         kmax <<= 1
%o A046313     while True:
%o A046313         kmid = kmax+kmin>>1
%o A046313         if f(kmid) < kmid:
%o A046313             kmax = kmid
%o A046313         else:
%o A046313             kmin = kmid
%o A046313         if kmax-kmin <= 1:
%o A046313             break
%o A046313     return kmax # _Chai Wah Wu_, Aug 23 2024
%Y A046313 Subsequence of A033987, A046304, A046305, A046307, A046309, and A046311.
%Y A046313 Cf. A046314.
%K A046313 nonn
%O A046313 1,1
%A A046313 _Patrick De Geest_, Jun 15 1998