This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046313 #22 Aug 24 2024 01:57:44 %S A046313 1024,1536,2048,2304,2560,3072,3456,3584,3840,4096,4608,5120,5184, %T A046313 5376,5632,5760,6144,6400,6656,6912,7168,7680,7776,8064,8192,8448, %U A046313 8640,8704,8960,9216,9600,9728,9984,10240,10368,10752,11264,11520,11664,11776 %N A046313 Numbers that are divisible by at least 10 primes (counted with multiplicity). %H A046313 John Cerkan, <a href="/A046313/b046313.txt">Table of n, a(n) for n = 1..10000</a> %F A046313 Product p_i^e_i with Sum e_i >= 10. %F A046313 a(n) = n + O(n (log log n)^8/log n). - _Charles R Greathouse IV_, Apr 07 2017 %t A046313 Select[Range[12000],PrimeOmega[#]>9&] (* _Harvey P. Dale_, Dec 17 2018 *) %o A046313 (PARI) is(n)=bigomega(n)>9 \\ _Charles R Greathouse IV_, Sep 17 2015 %o A046313 (Python) %o A046313 from math import isqrt, prod %o A046313 from sympy import primerange, integer_nthroot, primepi %o A046313 def A046313(n): %o A046313 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A046313 def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,10))) %o A046313 kmin, kmax = 1,2 %o A046313 while f(kmax) >= kmax: %o A046313 kmax <<= 1 %o A046313 while True: %o A046313 kmid = kmax+kmin>>1 %o A046313 if f(kmid) < kmid: %o A046313 kmax = kmid %o A046313 else: %o A046313 kmin = kmid %o A046313 if kmax-kmin <= 1: %o A046313 break %o A046313 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A046313 Subsequence of A033987, A046304, A046305, A046307, A046309, and A046311. %Y A046313 Cf. A046314. %K A046313 nonn %O A046313 1,1 %A A046313 _Patrick De Geest_, Jun 15 1998