This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046314 #42 Feb 16 2025 08:32:39 %S A046314 1024,1536,2304,2560,3456,3584,3840,5184,5376,5632,5760,6400,6656, %T A046314 7776,8064,8448,8640,8704,8960,9600,9728,9984,11664,11776,12096,12544, %U A046314 12672,12960,13056,13440,14080,14400,14592,14848,14976,15872,16000,16640 %N A046314 Numbers that are divisible by exactly 10 primes with multiplicity. %C A046314 Also called 10-almost primes. Products of exactly 10 primes (not necessarily distinct). Any 10-almost prime can be represented in several ways as a product of two 5-almost primes A014614 and in several ways as a product of five semiprimes A001358. - _Jonathan Vos Post_, Dec 11 2004 %H A046314 T. D. Noe, <a href="/A046314/b046314.txt">Table of n, a(n) for n = 1..10000</a> %H A046314 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Reference</a> %F A046314 Product p_i^e_i with Sum e_i = 10. %F A046314 a(n) ~ 362880n log n / (log log n)^9. - _Charles R Greathouse IV_, May 06 2013 %t A046314 Select[Range[5000], Plus @@ Last /@ FactorInteger[ # ] == 10 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *) %t A046314 Select[Range[17000],PrimeOmega[#]==10&] (* _Harvey P. Dale_, Jun 23 2018 *) %o A046314 (PARI) is(n)=bigomega(n)==10 \\ _Charles R Greathouse IV_, Mar 21 2013 %o A046314 (Python) %o A046314 from math import isqrt, prod %o A046314 from sympy import primerange, integer_nthroot, primepi %o A046314 def A046314(n): %o A046314 def bisection(f,kmin=0,kmax=1): %o A046314 while f(kmax) > kmax: kmax <<= 1 %o A046314 while kmax-kmin > 1: %o A046314 kmid = kmax+kmin>>1 %o A046314 if f(kmid) <= kmid: %o A046314 kmax = kmid %o A046314 else: %o A046314 kmin = kmid %o A046314 return kmax %o A046314 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A046314 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,10))) %o A046314 return bisection(f,n,n) # _Chai Wah Wu_, Nov 03 2024 %Y A046314 Cf. A046313, A120051 (number of 10-almost primes <= 10^n). %Y A046314 Cf. A101637, A101638, A101605, A101606. %Y A046314 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), this sequence (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011 %K A046314 nonn %O A046314 1,1 %A A046314 _Patrick De Geest_, Jun 15 1998