cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046314 Numbers that are divisible by exactly 10 primes with multiplicity.

This page as a plain text file.
%I A046314 #42 Feb 16 2025 08:32:39
%S A046314 1024,1536,2304,2560,3456,3584,3840,5184,5376,5632,5760,6400,6656,
%T A046314 7776,8064,8448,8640,8704,8960,9600,9728,9984,11664,11776,12096,12544,
%U A046314 12672,12960,13056,13440,14080,14400,14592,14848,14976,15872,16000,16640
%N A046314 Numbers that are divisible by exactly 10 primes with multiplicity.
%C A046314 Also called 10-almost primes. Products of exactly 10 primes (not necessarily distinct). Any 10-almost prime can be represented in several ways as a product of two 5-almost primes A014614 and in several ways as a product of five semiprimes A001358. - _Jonathan Vos Post_, Dec 11 2004
%H A046314 T. D. Noe, <a href="/A046314/b046314.txt">Table of n, a(n) for n = 1..10000</a>
%H A046314 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Reference</a>
%F A046314 Product p_i^e_i with Sum e_i = 10.
%F A046314 a(n) ~ 362880n log n / (log log n)^9. - _Charles R Greathouse IV_, May 06 2013
%t A046314 Select[Range[5000], Plus @@ Last /@ FactorInteger[ # ] == 10 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *)
%t A046314 Select[Range[17000],PrimeOmega[#]==10&] (* _Harvey P. Dale_, Jun 23 2018 *)
%o A046314 (PARI) is(n)=bigomega(n)==10 \\ _Charles R Greathouse IV_, Mar 21 2013
%o A046314 (Python)
%o A046314 from math import isqrt, prod
%o A046314 from sympy import primerange, integer_nthroot, primepi
%o A046314 def A046314(n):
%o A046314     def bisection(f,kmin=0,kmax=1):
%o A046314         while f(kmax) > kmax: kmax <<= 1
%o A046314         while kmax-kmin > 1:
%o A046314             kmid = kmax+kmin>>1
%o A046314             if f(kmid) <= kmid:
%o A046314                 kmax = kmid
%o A046314             else:
%o A046314                 kmin = kmid
%o A046314         return kmax
%o A046314     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o A046314     def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,10)))
%o A046314     return bisection(f,n,n) # _Chai Wah Wu_, Nov 03 2024
%Y A046314 Cf. A046313, A120051 (number of 10-almost primes <= 10^n).
%Y A046314 Cf. A101637, A101638, A101605, A101606.
%Y A046314 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), this sequence (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011
%K A046314 nonn
%O A046314 1,1
%A A046314 _Patrick De Geest_, Jun 15 1998