This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046323 #13 Sep 10 2024 00:23:49 %S A046323 59049,98415,137781,164025,216513,229635,255879,273375,321489,334611, %T A046323 360855,373977,382725,426465,452709,455625,505197,535815,557685, %U A046323 570807,597051,601425,610173,623295,637875,710775,728271,750141,754515,759375 %N A046323 Odd numbers divisible by exactly 10 primes (counted with multiplicity). %H A046323 John Cerkan, <a href="/A046323/b046323.txt">Table of n, a(n) for n = 1..10000</a> %t A046323 Select[Range[9,800001,2],PrimeOmega[#]==10&] (* _Harvey P. Dale_, May 26 2013 *) %o A046323 (Python) %o A046323 from math import isqrt, prod %o A046323 from sympy import primerange, integer_nthroot, primepi %o A046323 def A046323(n): %o A046323 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A046323 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,10))) %o A046323 def bisection(f,kmin=0,kmax=1): %o A046323 while f(kmax) > kmax: kmax <<= 1 %o A046323 while kmax-kmin > 1: %o A046323 kmid = kmax+kmin>>1 %o A046323 if f(kmid) <= kmid: %o A046323 kmax = kmid %o A046323 else: %o A046323 kmin = kmid %o A046323 return kmax %o A046323 return bisection(f,n,n) # _Chai Wah Wu_, Sep 09 2024 %Y A046323 Cf. A046314. %K A046323 nonn %O A046323 1,1 %A A046323 _Patrick De Geest_, Jun 15 1998