cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046323 Odd numbers divisible by exactly 10 primes (counted with multiplicity).

This page as a plain text file.
%I A046323 #13 Sep 10 2024 00:23:49
%S A046323 59049,98415,137781,164025,216513,229635,255879,273375,321489,334611,
%T A046323 360855,373977,382725,426465,452709,455625,505197,535815,557685,
%U A046323 570807,597051,601425,610173,623295,637875,710775,728271,750141,754515,759375
%N A046323 Odd numbers divisible by exactly 10 primes (counted with multiplicity).
%H A046323 John Cerkan, <a href="/A046323/b046323.txt">Table of n, a(n) for n = 1..10000</a>
%t A046323 Select[Range[9,800001,2],PrimeOmega[#]==10&] (* _Harvey P. Dale_, May 26 2013 *)
%o A046323 (Python)
%o A046323 from math import isqrt, prod
%o A046323 from sympy import primerange, integer_nthroot, primepi
%o A046323 def A046323(n):
%o A046323     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o A046323     def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,10)))
%o A046323     def bisection(f,kmin=0,kmax=1):
%o A046323         while f(kmax) > kmax: kmax <<= 1
%o A046323         while kmax-kmin > 1:
%o A046323             kmid = kmax+kmin>>1
%o A046323             if f(kmid) <= kmid:
%o A046323                 kmax = kmid
%o A046323             else:
%o A046323                 kmin = kmid
%o A046323         return kmax
%o A046323     return bisection(f,n,n) # _Chai Wah Wu_, Sep 09 2024
%Y A046323 Cf. A046314.
%K A046323 nonn
%O A046323 1,1
%A A046323 _Patrick De Geest_, Jun 15 1998