This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046343 #20 Nov 15 2023 11:53:36 %S A046343 4,5,6,6,7,7,9,8,8,8,9,10,13,9,10,15,9,11,10,10,14,19,12,10,21,16,11, %T A046343 12,15,11,25,11,14,12,20,17,11,16,13,22,31,12,33,13,12,18,16,21,26,14, %U A046343 12,39,13,23,18,18,13,12,43,14,22,45,32,17,13,20,27,34,49,24,13,16,17 %N A046343 Sum of the prime factors of the composite numbers (counted with multiplicity). %C A046343 The number of partitions of k into prime parts smaller than itself gives the number of times that a(n) = k. - _Gionata Neri_, Jun 11 2015 %C A046343 That number of partitions is A000607(k) if k is not prime, and A000607(k) - 1 if k is prime. - _Robert Israel_, Jun 11 2015 %H A046343 Robert Israel, <a href="/A046343/b046343.txt">Table of n, a(n) for n = 1..10000</a> %F A046343 a(n) = A001414(A002808(n)). - _Michel Marcus_, Jun 11 2015 %e A046343 a(31)=25 because 46 = 2 * 23 and 25 = 2 + 23. %p A046343 count:= 0: %p A046343 for n from 2 while count < 200 do %p A046343 if not isprime(n) then %p A046343 count:= count+1; %p A046343 a[count]:= add(t[1]*t[2],t=ifactors(n)[2]) %p A046343 fi %p A046343 od: %p A046343 seq(a[i],i=1..count); # _Robert Israel_, Jun 11 2015 %t A046343 Total@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Select[Range@ 120, CompositeQ] (* _Michael De Vlieger_, Jun 11 2015 *) %t A046343 t = {}; Do[If[! PrimeQ[n], AppendTo[t, Apply[Dot, Transpose[FactorInteger[n]]]]], {n, 4, 245}]; t (* _Zak Seidov_, Jul 03 2015 *) %Y A046343 Cf. A002808, A001414. %Y A046343 Cf. A000607, A046344, A046345. %K A046343 nonn %O A046343 1,1 %A A046343 _Patrick De Geest_, Jun 15 1998