cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046343 Sum of the prime factors of the composite numbers (counted with multiplicity).

This page as a plain text file.
%I A046343 #20 Nov 15 2023 11:53:36
%S A046343 4,5,6,6,7,7,9,8,8,8,9,10,13,9,10,15,9,11,10,10,14,19,12,10,21,16,11,
%T A046343 12,15,11,25,11,14,12,20,17,11,16,13,22,31,12,33,13,12,18,16,21,26,14,
%U A046343 12,39,13,23,18,18,13,12,43,14,22,45,32,17,13,20,27,34,49,24,13,16,17
%N A046343 Sum of the prime factors of the composite numbers (counted with multiplicity).
%C A046343 The number of partitions of k into prime parts smaller than itself gives the number of times that a(n) = k. - _Gionata Neri_, Jun 11 2015
%C A046343 That number of partitions is A000607(k) if k is not prime, and A000607(k) - 1 if k is prime. - _Robert Israel_, Jun 11 2015
%H A046343 Robert Israel, <a href="/A046343/b046343.txt">Table of n, a(n) for n = 1..10000</a>
%F A046343 a(n) = A001414(A002808(n)). - _Michel Marcus_, Jun 11 2015
%e A046343 a(31)=25 because 46 = 2 * 23 and 25 = 2 + 23.
%p A046343 count:= 0:
%p A046343 for n from 2 while count < 200 do
%p A046343   if not isprime(n) then
%p A046343     count:= count+1;
%p A046343     a[count]:= add(t[1]*t[2],t=ifactors(n)[2])
%p A046343   fi
%p A046343 od:
%p A046343 seq(a[i],i=1..count); # _Robert Israel_, Jun 11 2015
%t A046343 Total@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Select[Range@ 120, CompositeQ] (* _Michael De Vlieger_, Jun 11 2015 *)
%t A046343 t = {}; Do[If[! PrimeQ[n], AppendTo[t, Apply[Dot, Transpose[FactorInteger[n]]]]], {n, 4, 245}]; t (* _Zak Seidov_, Jul 03 2015 *)
%Y A046343 Cf. A002808, A001414.
%Y A046343 Cf. A000607, A046344, A046345.
%K A046343 nonn
%O A046343 1,1
%A A046343 _Patrick De Geest_, Jun 15 1998