cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).

This page as a plain text file.
%I A046346 #57 May 29 2022 21:53:09
%S A046346 4,16,27,30,60,70,72,84,105,150,180,220,231,240,256,286,288,308,378,
%T A046346 440,450,476,528,540,560,576,588,594,624,627,646,648,650,728,800,805,
%U A046346 840,884,897,900,945,960,1008,1040,1056,1080,1100,1122,1134,1160,1170,1248
%N A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).
%C A046346 If m is in the sequence and d|m, then m^d is also a term. Note that this sequence contains all infinite subsequences of the form p^(p^k) for k>0, where p is a prime. - _Amiram Eldar_ and _Thomas Ordowski_, Feb 06 2019
%C A046346 If one selects some composite k, k >= 8, and decomposes (k - sopfr(k)) into an additive partition having only prime parts, then those parts, when taken as a product with k, yield an element of this sequence. - _Christopher Hohl_, Jul 30 2019
%H A046346 François Huppé, <a href="/A046346/b046346.txt">Table of n, a(n) for n = 1..50000</a> (terms 1..1000 from T. D. Noe)
%H A046346 K. Alladi and P. Erdős, <a href="http://projecteuclid.org/euclid.pjm/1102811427">On an additive arithmetic function</a>, Pacific J. Math., Volume 71, Number 2 (1977), 275-294. See "special numbers" on page 287.
%e A046346 a(38) = 884 = 2 * 2 * 13 * 17 -> 2 + 2 + 13 + 17 = 34 so 884 / 34 = 26.
%p A046346 isA046346 := proc(n)
%p A046346     if isprime(n) then
%p A046346         false;
%p A046346     elif modp(n,A001414(n)) = 0 then
%p A046346         true;
%p A046346     else
%p A046346         false;
%p A046346     end if;
%p A046346 end proc:
%p A046346 for n from 2 to 1000 do
%p A046346     if isA046346(n) then
%p A046346         printf("%d,",n);
%p A046346     end if;
%p A046346 end do: # _R. J. Mathar_, Jan 12 2016
%t A046346 Select[Range[2,1170],!PrimeQ[#]&&IntegerQ[#/Total[Times@@@FactorInteger[#]]]&] (* _Jayanta Basu_, Jun 02 2013 *)
%o A046346 (PARI) sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]);}
%o A046346 lista(nn) = forcomposite(n=2, nn, if (! (n % sopfr(n)), print1(n, ", "));); \\ _Michel Marcus_, Jan 06 2016
%o A046346 (MATLAB) m=1;for u=2:1200 if and(isprime(u)==0,mod(u,sum(factor(u)))==0); sol(m)=u; m=m+1; end; end;sol % _Marius A. Burtea_, Jul 31 2019
%o A046346 (Magma) [k:k in [2..1200]| not IsPrime(k) and  k mod (&+[m[1]*m[2]: m in Factorization(k)]) eq 0]; // _Marius A. Burtea_, Jul 31 2019
%o A046346 (Python)
%o A046346 from sympy import factorint
%o A046346 def ok(n):
%o A046346   f = factorint(n)
%o A046346   return sum(f[p] for p in f) > 1 and n % sum(p*f[p] for p in f) == 0
%o A046346 print(list(filter(ok, range(1250)))) # _Michael S. Branicky_, Apr 16 2021
%Y A046346 Cf. A036844, A046347, A046348, A001414.
%Y A046346 Contains A071142.
%K A046346 nonn
%O A046346 1,1
%A A046346 _Patrick De Geest_, Jun 15 1998
%E A046346 Description corrected by Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002